Complenity of Matrix Multiplication (contd...)

Wednesday, 17 May 200 12:36

Leet vee 3

Recall:- $\frac{M}{K_{K,m,n}} : C^{K\times m} \times C^{m\times n} \longrightarrow C^{K\times n} \text{ is the matrix multi map}$ $(A,B) \longmapsto A\times B$

M(k,m,n) is a bilinear map, to can be thought of as a densor in (kxm) * & (mxn) * & (Kxn).

W= enf { YER/R(M/n,n,n) = O(n)}

We want to Bhody w

Mouhinery that gives you on u.b. on W, given u.b.on R(MLK,m,n>) for fined k, m,n

Real Strassa showed R($M_{\langle 2,2,2\rangle}$) ≤ 7 .

Defor [Permutation of tensors] Let t & A&B&C, where

 $t = \stackrel{\frown}{\underset{i=1}{2}} t_{j}, \text{ where } t_{j} = \stackrel{\frown}{\underset{j}{\underset{i=1}{2}}} \otimes \stackrel{\frown}{\underset{i}{\underset{j}{\underset{i=1}{2}}}} \otimes \stackrel{\frown}{\underset{i=1}{2}} \odot \stackrel{\frown}{\underset{i=1}{2}} \odot$

Lemme R(-(t)) = R(t). Proof obvious

Defin [Restriction of tensors]. Let $t \in A \otimes B \otimes C$ be such that $t = \hat{\mathcal{E}}_{i=1} a_i \otimes b_i \otimes C_i$. Let $t' \in A' \otimes B' \otimes C'$ be such that

 $t'=\underset{i=1}{\overset{A}{\underset{}}} f_{i}(a_{i})\otimes f_{2}(b_{i})\otimes f_{3}(c_{i}), \text{ where } f_{i}:A\to A', f_{2}:B\to B',$ $f_{3}:C\to C' \text{ are homomorphism.}$

or a 1' - a last of to and us denote t' < t.

We say t' is a Restriction of t, and we denote $t' \lesssim t$.

Lemma If t' \(t, R(t') \le R(t). We have equality when f, fe, f3 are i'lo morphisms.

Take NES3. R(M NK,m,n) = R(M NK,m,ns)

Defn [Direct sum oftensons] te F^k⊗ F^m⊗ Fⁿ, t'e F^k⊗ F^m⊗ Fⁿ.

ai is a k-dimensional co-ordinate vector.

ai are K-dim co-ordinate ventres

$$a_{i} = (a_{i}, -\frac{0}{k^{i}}), b_{i}, -\frac{c_{i}}{n}$$

$$a_{i} \in \mathbb{F}^{k+k}$$

$$a_{i} \in \mathbb{F}^{k+k}$$

$$a_{i} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, a_{i} \end{pmatrix}, b_{i} = 0.1, \quad C_{i}$$

t⊕t' = ≥ ai ⊗ bi ⊗ Ci + ≥ ai ⊗ bi ⊗ Ci + Lemna R (tot') = R(t) + R(t') Conjecture This inequality is tight. (Stranen's additivity Conjecture) Defn [tenor product of tenous] t∈ FR ⊗ FM ⊗ FM, t'∈ FR' ⊗ FM ⊗ FM $t = \underbrace{zt_{i}}_{t_{i}} \quad t_{i} = \underbrace{a_{i} \otimes h_{i} \otimes c_{i}}_{t_{i}} \quad t_{i}' = \underbrace{a_{i} \otimes h_{i} \otimes c_{i}}_{t_{i}'}$ $\Rightarrow a_{i} = (\underbrace{a_{i}''}_{t_{i}}, \dots, \underbrace{a_{i}''}_{t_{i}'})$ $\Rightarrow A_{i} = (\underbrace{a_{i}''}_{t_{i}}, \dots, \underbrace{a_{i}''}_{t_{i}'})$ $\Rightarrow A_{i} = (\underbrace{a_{i}''}_{t_{i}}, \dots, \underbrace{a_{i}''}_{t_{i}'})$ $\left(a_i \otimes a_i^{\prime}\right)_{i,j} = a^{(i)} \times a^{(j)}$ extend linearly to obtain to to t' CFR'SFm' &Fm' Lemma R(tot) = R(t) R(t') Proof by defr 1 Observe M<R,m,n> & M<R',m',n'> = N<Rk', mm', nn'> Then $R(M_{\langle R,m,n\rangle}) \leq n$. Then $w \leq 3 \log_{kmn} n$ $R\left(M_{\langle k,m,n\rangle} \otimes M_{\langle m,n,k\rangle} \otimes M_{\langle n,k,m\rangle}\right) \leq x^{3}$ =) $R\left(M_{kmn, kmn, kmn}\right) \leq x^3 = (kmn)^3 \log^4 km$

W & 3 log kmn

Strassen $R(M_{\langle 2,2,2\rangle}) \leq 7 \implies \omega \leq 3\log_8 7 \approx 2.8074$ Pan $R(M_{\langle 70,70,70\rangle}) \leq 143640 \implies \omega \leq 2.796$

There is our intuitive way.

Timeline of matrix multiplication exponent

Year Bound on omega	Authors
1969 2.8074	Strassen ^[1]
1978 2.796	Pan ^[11]
1979 <mark>2.780</mark>	Bini, Capovani [it], Romani ^[12]
1981 2.522	Schönhage ^[13]
1981 2.517	Romani ^[14]
1981 2.496	Coppersmith, Winograd ^[15]
1986 2.479	Strassen ^[16]
1990 2.3755	Coppersmith, Winograd ^[17]
2010 2.3737	Stothers ^[18]
2013 2.3729	Williams ^{[19][20]}
2014 2.3728639	Le Gall ^[21]
2020 2.3728596 4	Alman, Williams ^[3]
2022 2.37188	Duan, Wu, Zhou ^[2]

Border lank -

Consider M L2,2,3>

$$2.2 \times 2\times 3 \longrightarrow 2\times 3$$

$$\begin{bmatrix} 3_{11} & 3_{12} \\ 3_{21} & 3_{22} \end{bmatrix} \times \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{23} & y_{23} \end{bmatrix} = \begin{bmatrix} 3_{11} & 3_{12} & 3_{13} \\ 3_{21} & 3_{22} & 3_{23} \end{bmatrix}$$

M Reduced <2,2,2>

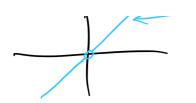
$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \times \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{bmatrix} 3_{11} & 3_{12} \\ 3_{21} & x \end{bmatrix}$$

Idea Do M (2,2,3) uning two M reduced (2,2,2)

Idea Do M (2,2,3) www. Mredweed (2,2,2)

Mredweed (2,2,2) in 6 mults. frivially. Conyon do in 5 mults?

shows $R(M_{(2)}^{red}) \le 6$. Bini et al. attempted to find a rank five expression for $M_{(2)}^{red}$. They searched for such an expression by computer. Their method was to minimize the norm of $M_{(2)}^{red}$ minus a rank five tensor that varied (see §4.6 for a description of the method), and their computer kept on producing rank five tensors with the norm of the difference getting smaller and smaller, but with larger and larger coefficients. Bini (personal communication) told me about how he lost sleep trying to understand what was wrong with his computer code. This went on for some time, when finally he realized there was nothing wrong


$$M_{\text{Reduced } \langle 2,2,2\rangle} = \lim_{t \to 0} \frac{1}{t} \left[(\alpha_{12} + t \alpha_{11}) \otimes (y_{12} + t y_{22}) \otimes \beta_{21} \right]$$

 $+ (\chi_{21} + t \chi_{11}) \otimes y_{11} \otimes (\xi_{11} + t \xi_{12}) - (\chi_{12} \otimes y_{12} \otimes (\xi_{11} + \xi_{21} + t \xi_{12}))$ $- \chi_{21} \otimes ((y_{11} + y_{12}) + t y_{21}) \otimes \xi_{11} + (\chi_{12} + \chi_{21}) \otimes (y_{12} + t y_{21}) \otimes (\xi_{11} + \xi_{21})$ $+ (\chi_{21} + t \chi_{21}) \otimes \xi_{11} + (\chi_{12} + \chi_{21}) \otimes (\xi_{12} + t \chi_{21}) \otimes (\xi_{11} + \xi_{21})$

M reduced $\angle 2,2,2>$ Lank 5 tensor

 \Re \Re (Mreduced $\langle 2,2,2\rangle$) ≤ 5 . We'll use u.b. on border contexts get an upper bound on ω .

$$\left\{ (x,n) \mid x \in \mathbb{R} \right\} = Z(y-x)$$
Punched line $Z(y-x) \setminus \{0,0\}$

Defn [Zaeiski Closwee] Zaeiski cloner of the purcheed line is Zeeo set of the polynomial y-n.

If a set is javishi cland, there is a finite set of polynomials whose common jews vanish encetyon the set.

Defn [Segre Vaciety] (Parameterizes Rank 1 terms)

Seg: $P(A_1) \times \dots P(A_n) \longrightarrow P(A_1 \otimes \dots \otimes A_n)$ $(a_1, \dots, a_n) \longmapsto a_1 \otimes \dots \otimes a_n$

a: have dim (Ai) homogeneous coordinates

= In (Seg) - Segre Vauley.

Defn [Secont line] Let V be a projective variety. A line L is Called a Second line to V if L meets V in two or more points

Defn Let X = IP(V) be a projective variety. Define

 $S_{A}(x)^{\circ} = \left\{ \begin{array}{l} (x_{1}, \dots, x_{k}, \xi) \in X^{\times n} \times \mathbb{P}(v) \\ \text{ } \mathcal{S} \in \mathbb{Span}(x_{1}, \dots, x_{k}) \end{array} \right\}$ $\leq S_{ey}(x^{\times n} \times \mathbb{P}(v)) \leq \mathbb{P}(v^{\otimes n+1}) \leq \sum_{k=1}^{k} (x_{k})^{\circ}.$ Let $S_{A}(x) = S_{A}(x)^{\circ}.$

Sn(x) is Called the 1th abstract Secont variety of X.

 $T^{0}: S_{\lambda}(\chi) \longrightarrow \mathbb{P}(\chi)$ 2 likewise $T^{0}: S_{\lambda}(\chi) \longrightarrow \mathbb{P}(\chi)$

(x,..., mx,3) -> 3

- Image of To is denoted of (x) (Called 4th Selant variety of X - 67 (X) = Im (TT) (o, (x)= x) When X = Seg (P(A,) x --- x P(An)) on (x) - Set of tensors of border lank at most a (Rank jumping tener) $= (1, \otimes 1_2 \otimes y_3) + y_1 \otimes 1_2 \otimes 1_3$ Diagram m (a, +1 y,) @ (a, +1 y2) @ (a3+1 y3) -n (7, 8 7, 8 x2) = lank 2 tensor $n(x_1 + 1 y_1) \otimes (x_2 + 1 y_2)$ C & 8 pan (a, b) (0) (013 + 1 43) Rank I tensor Second line to the Segre Variety. (Contained in the Second Kank I tensors (Segre Variety) Second vociety) Mreduced <2,2,2> is a lank jumping tensor I dea: - Interpolate between lank and border Rank Let & be an indeterminate Defn [h-rank, border Rank] t∈ FR@FM@FM $\mathbb{O} \mathbb{R}_{h}(t) = \min \{ x \mid \exists \ \forall i \in \mathbb{F}[\epsilon]^{k}, \ \forall i \in \mathbb{F}[\epsilon]^{m}, \ \forall i \in \mathbb{F}[\epsilon]^{m}, \ \forall i \in \mathbb{F}[\epsilon]^{m} \}$ $\sum_{i=1}^{n} u_i \otimes v_i \otimes w_i = \varepsilon^h t + O(\varepsilon^{h+1})$ 1 / 2 u. (x) v. (x) w.

Week 3 Page 7

Lemma () Ro(t) = R(t)

Proof By defn 🖾

Lemma (1) TTES3: Rn (TILt) = Rn(t)

(3)
$$R_{k+k'}(t\otimes t') \leq R_k(t) R_{k'}(t')$$

Proof Some as earlier lemmas.. use language of Rn 🖾

Lemma [tuen approx. Computations into lead ones] There is a Constant $C_h \leq (h+2)$ $\delta.t$ $\forall t$

$$R(t) \leq C_h R_h(t)$$

Proof Counting \

 $\frac{R(M_{k,m,n})}{R(M_{k,m,n})} \leq \lambda = 0 \quad \omega \leq 3\log 4$

Proof Use Rn... and same logic as previous than that gave you u.b. on w using an u.b. on R(M27)...

Make h Broll...

$$\frac{\text{(N)}}{\text{Reduced } (2,2,2)} \leq 5 \Rightarrow \frac{\text{R}}{\text{N}} \left(\underset{(2,2,3)}{\text{M}} \right) \leq 10$$

$$\Rightarrow \omega \leq 3 \log_{10}^{10} \approx 2.78$$

Schonhage's 7 theorem
J Chonhages / Moral
Strassed 2 Pan turned u.b. of R (M/x) into u.b. on w
O Diet I turned u.b. on K (M2+>) into unit
Schonhage there u.b. on R (not a mat multi-tenger) into u but it is a direct on wo sum of matrix mult. on wo tensor
Lemma () R(M(x,1,n) = kn+m (1,m,1) = kn+m
2 R (M<1,n>)=kn & R (M<1,n,1>)=m
(3) $\frac{R}{R}$ ($\frac{N}{\langle R, l, n \rangle}$ ($\frac{R}{\langle R, l, n \rangle}$) $\leq kn+1$ when $N = (n-1)(k-1)$
Defn I E F' & F' & F' is 8.t
$(T_{\langle x \rangle})_{i,i,i} = 1 \forall i \in [k] \geq 0$ selventure. $R(T_{\langle x \rangle}) = 1$
Lemma R(t) = x => t = I =>
Proof Shipped to
Thm [7-theorem] If R (H Ki, mi, Mi) \le 1, and A > P, then
$W \leq 3$?, where T sortisfies $\sum_{i=1}^{p} (k_i m_i n_i)^T = 1 \leftarrow$
Proof Shipped 1
$ \Re \left(\begin{array}{c} \mathbb{R} \\ \mathbb{R} \end{array} \right) \left(\begin{array}{c} \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \end{array} \right) \left(\begin{array}{c} \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \end{array} \right) \left(\begin{array}{c} \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \end{array} \right) \left(\begin{array}{c} \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \\ \mathbb{R} \end{array} \right) \left(\begin{array}{c} \mathbb{R} \\ \mathbb{R}$

Coppersmith- Wingrad

dense sets of integer with no 3 teem alithmetic progressions

 \mathcal{O}

(19+1 (2) C9+1 (2) C9+1

expression has 32 terms. There out

R (Tq.cw) = 9+2.

Then
$$w \leq \log \left(\frac{4}{27} R \left(T_{2,cw}\right)^3\right)$$

$$\log q$$

Set q = 8, $\Rightarrow \omega \leq 2.41$

Defn [big CW tenson]

Tq, cw = Tq, cv + a, ⊗ b, © Cq+, + a, ⊗ b, ⊗ Co + aq+, ⊗ b, ⊗ G

C1+2 & C9+2 & C9+2

Then $R(T_{9,cw}^{\dagger}) = 9+2$, and

W \(\(\lambda \) \(\lambda

log q

CW. analyzed T+ Q.CW Tq,cw

Latest work analyses $(T_{9,CW}^{\dagger})^{\otimes 32} \Rightarrow \omega = 2.3728639$

Latest work analyses (TT2, CW) => WZ 2.3120031 People have shown that taking higher & higher power of Tof. cur won't improve beyond 2.3 Conjecture [Asymptotic Rann Conjecture] lim R (T2,CW) = 3 (Theorem W=2) Conjerture [No 3 disjoint equivoluminous] Let H be an abolion group. Let m, ..., m, EH. This satisfies N3DES properly if H S,T, U ⊆ [m], S,T, U diejoint Emi + & mi + & mi, ies iet,

The arthal Conjudne is that there is an H of size

[H] $\leq 2^{\circ(n)}$ [Theorem Conjudne =) asymptote

e.g. $H = \mathbb{Z}_2^n$ $m_i = e_i$ Satisfies N3DES property, but $|H| = 2^n$

one of the Surflower Conjectures is false.