Lecture 6

Wednesday, 7 June 2023 12:48

Last Leether () Dimension of Gauss image of permit-hyperhedore is
full, i.e. m²-2
(2) Need to Show that dim. I have image of det hyperhidree
2n-2.
(3) Degeneracy is presend under bubstitution, so
$$m^2-2 \leq 2n-2$$

Map Keedl → (Seg (Pⁿ⁻¹ × Pⁿ⁻¹)) → m (Pⁿ⁻¹)
()
$$T_{N}^{*} \rightarrow {}^{0} (Seg ((P^{n-1} × P^{n-1}))) = \{x \in Mat_{nxn} \mid x kee(M) \in In(M)\}$$

(2) $N_{m}^{*} \rightarrow {}^{0} (Seg (P^{n-1} × P^{n-1})) = kee M \otimes temere M)^{L} = kee M \otimes kee M$
Leenna din Zeeoe (det $N = 2n-2$

Prof Smooth phe one in the Gdet orbit of P_{n-1}
 $P_{n-1} = (I_{n-1} \circ 0)$
 $A = (D_{n-1} \circ D)$ [see J^{nn}^{*}
 $A = P_{n-1} \otimes Lee P_{n-1}^{*}$
 $Kee P_{n-1} \otimes Lee P_{n-1}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see J^{nn}^{*}
 $A = P_{n-1} \otimes Lee P_{n-1}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see J^{nn}^{*}
 $A = P_{n-1} \otimes Lee P_{n-1}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see J^{nn}^{*}
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{nn}^{*} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{nn}^{*} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to I^{n}^{*}$
 $F_{n-1} = (I_{n-1} \circ D)$ [see $J^{n-1} \to$

Week 6 Page 4

$$M_{nn} = \Psi + T_{n}$$

$$Rxx nilphed matrix
$$T_{oden matrix}$$

$$T_{od$$$$

There is an injerve with
$$f$$

 $g: T(SLm(C)) \rightarrow G_{deta}$ s.t.
 $\widetilde{A}(gY) = \Psi(g)(\widetilde{A}_{houst}(Y))$
 $T(SLm(C))$
 $T(SLm(C))$
 $T(SLm(C))$
 $T(SLm(C))$
 $T(SLm(C))$
 $T(gyou impose the restriction that you enbedding has the
above equivariance properly, then Grenet's embedding is optimal.
 $edc(perm_m) = 2^m - 1$
We have an engonential reperation b/w perm? det in a
Restricted model 1 computation.
 Tf we can show an equivariant expression for perm of the
 $dc(perm_m)^c$ then $VP_C \neq VNP_C$$

Waring Rank ENE-Circuits

Pefn [Waring Rank] $P \in \mathbb{C}[\bar{x}]_{d}$. The smallest a s.t. we can write $P = L_{i}^{d} + \dots + L_{h}^{d}$ $L_{i} \rightarrow linear forms$ Defn $[\leq N^{s} \leq - \text{Circuit}]$ Consists of three layers : first add gades. Second - powering gate third is just a single adde gate. $L \mapsto L^{s}$,

Week 6 Page 7

Chow vouchy of degree n in CN+ with An .--(2) If [1" permin] & ath second variety of the degree n Chao soviety in C^{m2+1}, then VP = VNP This [Cupta et al. " Method of Shifted partial derivatives"] ~ Any ETT O(Tm) ETI O(Tm) Circuit that computes permin must have top fanin at least 2 r. Came very close to VP = VNP Fewnomials Z Real -Tou conjecture Them [Descretes' Rule of highs] PER[x] of any rebit. degree, but only t monomials, it has N2t Roots (counted with multiplizities) & Fernomials Translations of MATHEMATICAL MONOGRAPHS Volume 88 Fewnomials A. G. Khovanskiĭ Conjecture [Real. Tau conjecture]

Conjuber [Real: Tau Conjuture]

$$\stackrel{K}{=} \prod_{i=1}^{m} f_{i,j}(x), where f_{i,j} are t-game. No. of faces in
 $ply(K, t, 2^m)$
The Real-Tau Conj =) $VP_{g} \neq VNP_{g}$
Mathematical problems for the next century
Severable
The Support of J, j, j of t.
() fix support of J, j, j of t.
() Let the coeff J dij be indepent $N(0, 1)$.
Then $[F[$ keel grees $] = O((Rm^2 t))$
Real: Tau Conj is three with prob ~ 1
Then $[Koi can et al.] O I t is how that
 $\stackrel{K}{=} \prod_{j=1}^{m} f_{j}^{K_{ij}}$ here $O(t^{0(2^n)})$ koots
 $\stackrel{K}{=} \lim_{j \neq 1} f_{j}^{K_{ij}}$ here $O(t^{0(2^n)})$ koots
 $\stackrel{K}{=} \lim_{j \neq 1} f_{j}^{K_{ij}}$ here $N^{(i)}(multiplicity)$
(2) Reachriched Cleares of depth 4- circuits (poly kyes) Cannot couple
the premanent.
 $Eg = f_{j} + 1 \longrightarrow Descarts gives $\sim t^{(i)}(inptonethell!)$
 $M_{KIN} T E CHNIICAL TOOL (WRON SALIAN)
Deffe Given $d_{1,..., d_{K}}$, define$$$$$

-

 \neg

Define Given
$$f_{1} \dots f_{k}$$
, define

$$W(f_{1} \dots f_{k}) = det \left[(f_{j}^{(i-1)})_{i,j} \in [k] \right]$$
Prop If $f_{1} \dots f_{k}$ are analytic functions, then:

$$\begin{cases} f_{i} \end{cases} are linearly indep <=> W(f_{1} \dots f_{k}) = 0.$$
Then [Voorhoeve 2 Van der Poetru] $f_{1} \dots f_{k}$ are real analytic functions
Ever an interval I. Then

$$N(f_{1} + \dots + f_{k}) = K - 1 + \underset{j=1}{\overset{K^{2}}{=}} N(W(f_{1} \dots f_{j}))$$
 $gress with multiplicity. + \underset{j=1}{\overset{K}{=}} N(W(f_{1} \dots f_{j}))$
Then [Koiven et al.] Same bound holds on gress of polynomials without
multiplicity if f_{i} 's are hirearly indep. on I.
Main the we this bol + $W(f_{1}^{K}, \dots, f_{k}^{K})$