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ABSTRACT

Natarajan, Abhiram Ph.D., Purdue University, May 2020. Betti numbers of determin-
istic and random sets in semi-algebraic and o-minimal geometry. Major Professors:
Saugata Basu, Elena Grigorescu.

Studying properties of random polynomials has marked a shift in algebraic ge-

ometry. Instead of worst-case analysis, which often leads to overly pessimistic per-

spectives, randomness helps perform average-case analysis, and thus obtain a more

realistic view. Also, via Erdős’ astonishing ’probabilistic method’, one can potentially

obtain deterministic results by introducing randomness into a question that apriori

had nothing to do with randomness.

In this thesis, we study topological questions in real algebraic geometry, o-minimal

geometry and random algebraic geometry, with motivation from incidence combina-

torics. Specifically, we prove results along two different threads:

(a) Topology of semi-algebraic and definable (over any o-minimal structure over R)

sets, in both deterministic and random settings.

(b) Topology of random hypersurface arrangements. In this case, we also prove a

result that could be of independent interest in random graph theory.

Towards the first thread, motivated by applications in o-minimal incidence com-

binatorics, we prove bounds (both deterministic and random) on the topological

complexity (as measured by the Betti numbers) of general definable hypersurfaces

restricted to algebraic sets (Basu et al., 2019b). Given any sequence of hypersurfaces,

we show that there exists a definable hypersurface Γ, and a sequence of polynomials,

such that each manifold in the sequence of hypersurfaces appears as a component of

Γ restricted to the zero set of some polynomial in the sequence of polynomials. This

shows that the topology of the intersection of a definable hypersurface and an alge-
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braic set can be made arbitrarily pathological. On the other hand, we show that for

random polynomials, the Betti numbers of the restriction of the zero set of a random

polynomial to any definable set deviates from a Bézout-type bound with bounded

probability.

Progress in o-minimal incidence combinatorics has lagged behind the developments

in incidence combinatorics in the algebraic case due to the absence of an o-minimal

version of the Guth-Katz polynomial partitioning theorem, and the first part of our

work explains why this is so difficult. However, our average result shows that if

we can prove that the measure of the set of polynomials which satisfy a certain

property necessary for polynomial partitioning is suitably bounded from below, by

the probabilistic method, we get an o-minimal polynomial partitioning theorem. This

would be a tremendous breakthrough and would enable progress on multiple fronts

in model theoretic combinatorics.

Along the second thread, we have studied the average Betti numbers of random

hypersurface arrangements (Basu et al., 2019a). Specifically, we study how the av-

erage Betti numbers of a finite arrangement of random hypersurfaces grows in terms

of the degrees of the polynomials in the arrangement, as well as the number of poly-

nomials. This is proved using a random Mayer-Vietoris spectral sequence argument.

We supplement this result with a better bound on the average Betti numbers when

one considers an arrangement of quadrics. This question turns out to be equiva-

lent to studying the expected number of connected components of a certain random

graph model, which has not been studied before, and thus could be of independent

interest. While our motivation once again was incidence combinatorics, we obtained

the first bounds on the topology of arrangements of random hypersurfaces, with an

unexpected bonus of a result in random graphs.
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1 INTRODUCTION

1.1 Semi-algebraic geometry

Real algebraic geometry is algebraic geometry over the real numbers R, or more

generally, over real closed fields. The primary focus of real algebraic geometry is

semi-algebraic sets, defined as elements of the boolean algebra over sets of the form

{(x1, . . . , xn) ∈ Rn | P (x1, . . . , xn) ≤ 0, P ∈ R[X1, . . . , Xn]}. In other words, semi-

algebraic sets are made of a finite number of conjunctions, disjunctions and negations

of the locus of polynomial inequalities.

Real algebraic geometry has a long history, beginning from early works such as the

Fourier-Motzkin elimination method and Sturm’s counting theorem. Classical alge-

braic geometry, usually done over algebraically closed fields, enjoys the property that

when an affine variety is projected down, the image is constructible. However, real

varieties don’t have this property; projections of real varieties can be semi-algebraic

sets. For example, the projection of Z(x2 + y2 − 1) is the interval [−1, 1]. How-

ever, due to the Tarski-Seidenberg theorem, we know that semi-algebraic sets project

down to semi-algebraic sets as well, thus making semi-algebraic sets central to real-

algebraic geometry. (Benedetti and Risler, 1991; Bochnak et al., 2013; Coste, 2000b)

are excellent introductions to the subject.

Table 1.1.: Examples of real-algebraic sets and semi-algebraic sets

real-algebraic sets semi-algebraic sets

Z(x2 + y2 − 1) Z(y − x2) {−(x2 + y2 − 1) ≥ 0} {y ≥ x} ∧ {x ≥ y}
{
x2 + y2 ≤ 2

}
∧ ({y − x ≥ 4} ∨ ¬{x− y ≤ 4})
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1.2 O-minimal Geometry

Semi-algebraic sets are known to posess many ‘tameness’ properties in a topolog-

ical sense, such as stratifiability, finite traingulability, etc., which makes their study

feasible. Often, in some theorems, it can be seen that it is only these tameness prop-

erties that are utilized. This in turn leads one to wonder if there are other classes

of sets that semi-algebraic geometry can be generalized to. For an obvious example,

observe that the graph of y = ex, at least on say [−1, 1] is isotopic to [−1, 1] itself, so

it is topologically no different. This question was articulated by Grothendieck in his

Esquisse d’un Programme (Grothendieck, 1997):

“...investigate classes of sets with the tame topological properties of semi-

algebraic sets...”

The answer to the above question is o-minimal geometry. O-minimal geometry,

whose genesis was in model theory, is an axiomatic generalization of semi-algebraic ge-

ometry, in so much as, many results about semi-algebraic sets are actually corollaries

of results in o-minimal geometry.

1.2.1 A soupçon of Model Theory

We refer the reader to references such as (Marker, 2006) to get a complete under-

standing of the basics of model theory. Below we shall present just a few definitions

that are meant to serve as a hack to know enough model theory so as to make sense

of the definition of o-minimality. We begin with the definition of a language.

Definition 1.2.1 A language L is given by:

1. A set of function symbols F and {nf | nf ∈ N}f∈F

2. A set of relation symbols R and {nR | nR ∈ N}R∈R

3. A set of constant symbols C
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The numbers nf and nR are the arities of the respective functions and relations.

Next we define what it means to have a structure based on a language.

Definition 1.2.2 An L-structure S is given by:

1. A non-empty set S called the universe, domain, or underlying set of S

2. One function fS : Snf → S for each f ∈ F

3. One set RS ⊆ SnR for each R ∈ R

4. One element cS ∈ S for each c ∈ C

For example, to study groups, we could use the language Lg = {·, e}, where ·

denotes binary function symbol and e is a constant symbol. The set of relation

symbols for Lg is empty. An Lg-structure G = (G, ·G, eG) denotes a universe G

equipped with a binary composition ·G and a distinguished element eG. An example

of an Lg-structure is G = (R, ·, 1), where we interpret · as multiplication and e as 1.

The language L will be used to create formulas that define properties of L-

structures.

Definition 1.2.3 An L-formula is a string created using the symbols (F ,R, C) of L,

variables v1, v2, . . ., equality =, boolean operators ∧,∨,¬, and quantifiers ∀,∃.

Finally, we define the notion of a definable set.

Definition 1.2.4 Let S = (S, . . .) be an L-structure. A set X ⊆ Sn definable if and

only if there is an L-formula φ such that X is exactly the set of all points of Sn that

satisfy φ.

We skip defining the notion of ‘satisfy’ in a rigorous manner with the rationale

that the reader has an intuitive understanding of what it means for a point to satisfy

a formula.
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Example 1.2.1 Here we provide an example to illustrate the efficacy of the above

notions. Let M = (Q,+,−, ·, 0, 1) be the field of rational numbers. Let φ(x, y, z) be

the formula

∃a∃b∃c xyz2 + 2 = a2 + xy2 − yc2,

and let ψ(x) be the formula

∀y∀z ([φ(y, z, 0) ∧ (∀w(φ(y, z, w) =⇒ φ(y, z, w + 1)))] =⇒ φ(y, z, x)) .

By the result of (Robinson, 1949), the set of all points that satisfy ψ(x) defines N in

Q.

1.2.2 O-minimal Structures

Let’s recall that our initial goal was to study structures where the definable sets

are ‘topologically tame’. Obviously not all structures have such definable sets. Con-

sider, for instance, the structure SZ, which is the smallest structure containing the

semialgebraic sets with the set of integers Z ∈ S1. Every Borel subset of Rn is in SZ.

Thus even innocuous looking structures can have complicated definable sets.

To study structures where the definable sets are ‘tame’, we begin with a charac-

terization of definable sets.

Proposition 1.2.1 (see Proposition 1.3.4 in (Marker, 2006)) LetM be an L-

structure. Suppose that Dn is a collection of subsets of Mn for all n ∈ N and D =

(Dn)n∈N is the smallest collection such that:

i) Mn ∈ Dn

ii) For all function symbols f of L of arity exactly n, the graph of fM is in Dn+1

iii) For all relation symbols R of L of arity exactly n, RM ∈ Dn

iv) For all i, j ≤ n, {(x1, . . . , xn) ∈Mn | xi = xj} ∈ Dn
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v) If X ∈ Dn, then M ×X ∈ Dn+1

vi) Each Dn is closed under complement, union, and intersection

vii) If X ∈ Dn+1, and π : Mn+1 →Mn is the projection map which takes

(x1, . . . , xn+1) 7→ (x1, . . . , xn),

then π(X) ∈ Dn

viii) If X ∈ Dn+m and b ∈Mm, then {a ∈Mn | (a, b) ∈ X} ∈ Dn

Then, X ⊆Mn is definable if and only if X ∈ Dn.

The above proposition gives a strong characterization of definable sets. Motivated

by this, we define o-minimal structures, which are the principal objects of study in

o-minimal geometry.

Definition 1.2.5 S = (Sn)n∈N, with Sn ⊂ P(Rn), is an o-minimal structure if:

• All algebraic subsets of Rn are in Sn

• Sn is closed under complementation, finite unions & intersections

• If A ∈ Sn, B ∈ Sm, then A×B ∈ Sn+m

• If A ∈ Sn+1, then Π(A) ∈ Sn, where Π : Rn+1 → Rn is the projection on the

first n coordinates

• Elements of S1 are precisely finite unions of points and intervals

The first four axioms make S a structure. (van den Dries, 1984; Pillay and

Steinhorn, 1986; Knight et al., 1986; Pillay and Steinhorn, 1988) noted that adding

the fifth axiom rendered the definable sets to be tame. Thus the fifth axiom is what

makes S o-minimal.
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Table 1.2.: Semi-algebraic sets vs Definable sets

semi-algebraic sets definable sets

The smallest structure containing all semi-algebraic sets (denoted Ssa) is known

to be o-minimal. Note that the Tarski-Seidenberg theorem is required to prove that

this is indeed the case. The interesting point is that this is not the only one. There

are now many more structures which have been proved to be o-minimal. - e.g. small-

est structure containing sets defined by the exponential function Sexp (Wilkie, 1996;

Khovanskĭı, 1991), restricted analytic functions San (Van den Dries, 1986), Pfaffian

functions SF (Wilkie, 1999), etc. Two resources to learn more about o-minimal struc-

tures are (van den Dries, 1998; Coste, 2000a).

Once again, we stress that while sets definable over any arbitrary o-minimal over R

naturally include sets far more general (for one, transcendental functions, albeit with

restrictions sometimes, are allowed in defining definable sets) than semi-algebraic sets,

they often share some of the ’topological tameness’ properties that semi-algebraic sets

share, thus making their study feasible. O-minimality is an extremely active topic of

research. In pure mathematics, there have been striking applications of o-minimality

in diophantine geometry, for e.g. in the resolution of the Andre-Oort conjecture (Pila,

2011). Besides pure mathematics, it is also important in applied mathematical areas.

For instance, in neural networks, the activations functions are transcendental, so

concepts represented by neural networks are definable, but not semi-algebraic (Tressl,

2010). Note however that while the ambit of o-minimal geometry is certainly bigger

than that of semi-algebraic geometry, examples such as the topologist’s sine cuve, the

cantor set, etc. are not admissible.
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1.3 Random Algebraic Geometry

Gauss’ fundamental theorem of algebra states that a complex polynomial of degree

d has exactly d complex zeros (counted with multiplicity). However, when we consider

a real polynomial of degree d, it can have any of 0, 2, . . . 2bd/2c number of real zeros.

Given a quadratic polynomial ax2+bx+c, there is a test to check how many real zeros

it has: if b2− 4ac < 0, it has no real zeros, and it has two (counted with multiplicity)

otherwise. However, for a number of such enumerative questions, there often aren’t

algebraic tests of the above form. An alternative perspective here is to consider the

question - how many real zeros does a polynomial of degree usually have?

As suggested by the term ‘usually’, instead of understanding the deterministic

picture, random algebraic geometry aims to understand the problem from a statisti-

cal perspective. Specifically, by applying a probability distribution, we would like to

study the statistical properties of polynomials. This approach has had a long history

beginning with the works (Kac, 1943; Kac, 1949; Littlewood and Offord, 1938) where

they considered random polynomials with standard Gaussian coefficients. The sem-

inal paper (Edelman and Kostlan, 1995) studied the same question but in different

settings, and more importantly introduced, what is commonly called the Edelman-

Kostlan measure, or just Kostlan measure for short.

Definition 1.3.1 The Edelman-Kostlan measure on R[X0, . . . , Xn](d), i.e. the space

of homogeneous polynomials of degree d in n+1 variables, is defined by choosing each

coefficient of

P =
∑
|α|=d

ξαx
α0
0 · · ·xαnn

independently from a centered Gaussian distribution, where,

ξα ∼ N
(

0,
d!

α0! . . . αn!

)
.

This measure is the restriction of the Fubini-Study measure to the space of real

polynomials. The variances of the gaussian random variables d!
α0!...αn!

are chosen in
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such a way that the resulting probability distribution is invariant under orthogonal

change of variables (there are no preferred points or direction in RP n, where zeroes

of P are naturally defined).

Let us see some partial justification of this by looking at the two variable degree

two case. Consider the Kostlan form with indeterminants (X0, X1).

P (X0, X1) = N (0, 1)X2
0 +N (0, 2)X0X1 +N (0, 1)X2

1 .

It is well know that finite subgroups of O(2,R) are either Cn, the cyclic group of order

n, or Dn, the dihedral group of order 2n.

Case 1: Let
(
Y0
Y1

)
=
(

cos θ − sin θ
sin θ cos θ

)(
X0
X1

)
. We have

P (Y0, Y1) = N (0, 1)Y 2
0 +N (0, 2)Y0Y1 +N (0, 1)Y 2

1

= N (0, 1) (X0 cos θ −X1 sin θ)2 +N (0, 1) (X0 sin θ +X1 cos θ)2

+N (0, 2) (X0 cos θ −X1 sin θ)(X0 sin θ +X1 cos θ)

= N
(
0, (X0 cos θ −X1 sin θ)4 + (X0 sin θ +X1 cos θ)4

)
+N

(
0, 2(X0 cos θ −X1 sin θ)2(X0 sin θ +X1 cos θ)2

)
= N

(
0, X4

0 (cos4 θ + sin4 θ + 2 sin2 θ cos2 θ)
)

+N
(
0, X4

1 (cos4 θ + sin4 θ + 2 sin2 θ cos2 θ)
)

+N
(
0, 4X3

0X1((((((((− cos3 θ sin θ +
hhhhhhsin3 θ cos θ +((((((

cos3 θ sin θ −hhhhhhcos θ sin3 θ)
)

+N
(
0, 4X0X

3
1 ((((((((− cos θ sin3 θ +

hhhhhhsin θ cos3 θ +((((((
cos θ sin3 θ −hhhhhhcos3 θ sin θ)

)
+N

(
0, 2X2

0X
2
1 (6 cos2 θ sin2 θ + cos4 θ + sin4 θ − 4 cos2 θ sin2 θ)

)
= N

(
0, X4

0

)
+N

(
0, X4

1

)
+N

(
0, 2X2

0X
2
1

)
= P (X0, X1).

Case 2: The case of a reflection is left as an exercise.
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We see above that the distribution is invariant under transformations from finite

subgroups of O(2,R). This generalizes, i.e. for a homogenous Kostlan form P in n

variables,

P ≡equiv. LP for any L ∈ O(n,R).

Additionally, if we consider zeros in projective space, where the zeros of homogenous

polynomials are naturally defined, we can say that no points or directions are preferred

in projective space. Moreover, if we extend this probability distribution to the whole

space of complex polynomials, by replacing real with complex Gaussian variables, it

can be shown that this extension is the unique Gaussian measure which is invariant

under unitary change of variables. This makes real Kostlan polynomials a natural

object of study.

This model for random polynomials received a lot of attention since pioneer works

of Edelman, Kostlan, Shub and Smale (Edelman and Kostlan, 1995; Shub and Smale,

1993b; Edelman et al., 1994; Kostlan, 2002; Shub and Smale, 1993c; Shub and Smale,

1993a) on random polynomial systems solving. A nice recent textbook is (Breiding

and Lerario, 2019).

1.3.1 Some basic results in random algebraic geometry

We shall now briefly review some results about random polynomials. The first

question that was considered was the average number of real zeros of univariate

polynomials with standard Gaussian co-efficients.

Theorem 1.3.1 ((Kac, 1943)) Let ZP (d) be a random variable that denotes the

number of real zeros of the random polynomial P ∈ R[X]d defined as

P = N (0, 1)Xd +N (0, 1)Xd−1 + . . .+N (0, 1) .

Then

lim
d→∞

E [ZP (d)] =
2

π
log d.
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For Edelman-Kostlan forms, we have the following result.

Theorem 1.3.2 ((Kostlan, 1993; Shub and Smale, 1993b)) Let ZP (d) be a ran-

dom variable that denotes the number of real zeros of the random polynomial P ∈

R[X]d defined as

P = N
(

0,

(
d

d

))
Xd+N

(
0,

(
d

d− 1

))
Xd−1 + . . .+N

(
0,

(
d

1

))
X+N

(
0,

(
d

0

))
.

Then

E [ZP (d)] =
√
d.

Let us now consider the case of polynomials in several variables. Obviously, for

P ∈ R[X1, . . . , Xn]d, then set of real zeros is no longer finite. In fact, it is now a real

algebraic hypersurface. This hypersurface is not compact in general, however, there

is a standard compactification. By taking the isomorphism

Xα1
1 . . . Xαn

n 7→ X
d−

∑n
i=1 αi

0 Xα1
1 . . . Xαn

n ,

we can instead just consider homogenous polynomials. In other words, we can consider

polynomials in R[X1, . . . , Xn](d) and look at zeros in real projective space. This zero

set will be compact and smooth for generic polynomials, and more importantly, will

contain the previous zero set as a dense subset. We can now consider the expected

Betti numbers of these projective hypersurfaces.

Theorem 1.3.3 ((Gayet and Welschinger, 2016)) Let Hp(d) denote a Kostlan

hypersurface which is the set of real zeros of a degree d homogenous Kostlan form in

n+ 1 variables. Then there exist universal constants a, b such that

a ≤ lim
d→∞

E
[
bi(Hp(d),Z /2Z)

]
Vol(RP n)

√
dn

≤ b,

where Vol(RP n) denotes the total volume of the real projective space for the Fubini-

Study metric.
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More information about the topology of random hypersufaces can be found in the

survey (Welschinger, 2015).
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2 TOPOLOGICAL COMPLEXITY OF SEMI-ALGEBRAIC AND DEFINABLE

SETS

Colloquially speaking, topology studies properties of sets which are invariant under

continuous transformations (stretching, bending, but not tearing). At a very high

level, topology asks the following question – given two objects, is there a continuous

transformation that transforms one into the other?

Figure 2.1.: “...a topologist cannot differentiate between a coffee mug and a donut
because they are homotopy equivalent...” – illustration of smooth transformation
from a coffee mug to a donut

Figure 2.2.: Just to belabor the point, these two koDubaLes are the same to me
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2.1 Betti Numbers

There is a long history of research on topological complexity of sets arising in semi-

algebraic geometry and o-minimal geometry. An important measure of the topological

complexity are the Betti numbers. They have been studied for pure mathematical

interest as well as for effecting fundamental advances in real algebraic geometry,

discrete geometry, statistical learning theory, convex optimization, complexity theory,

as well as applied areas such as robot motion planning, computer graphics. The reader

is referred to surveys such as (Gabrielov and Vorobjov, 2004; Basu et al., 2005a; Basu,

2017), as well as the definitive book (Basu et al., 2006), and references therein, for

an overview.

2.1.1 Betti numbers of semi-algebraic sets

The i-th Betti number of a semi-algebraic set S defined over R, denoted bi(S), is

the rank of the singular (co)homology group of S with integer coefficients, i.e. the rank

of H i(S,Z). Informally, the i-th Betti number measures the number of i-dimensional

holes in S. Specifically, b0(·) measures the number of connected components, b1(·)

measures the number of one-dimensional/circular holes, b2(·) measures the number

of two-dimensional voids/cavities, etc. Table 2.1 shows some semi-algebraic sets and

their Betti numbers.

Given a semi-algebraic set S ⊂ Rn, defined by at most m equations, each of degree

at most d, a prototypical topological question is to bound the Betti numbers of S

in terms of m, d, n. The first results along this line were obtained by (Oleinik and

Petrovsky, 1949), and later by (Thom, 1965) and (Milnor, 1964).

Theorem 2.1.1 ((Oleinik and Petrovsky, 1949; Thom, 1965; Milnor, 1964))

Let S ⊆ Rn be defined by the conjunction of s inequalities,

P1 ≥ 0, . . . , Ps ≥ 0, Pi ∈ R[X1, . . . , Xn],
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Table 2.1.: Betti numbers of semi-algebraic sets – examples

Object b0 b1 b2 bi≥3

1 0 0 0
5 0 0 0

1 1 0 0

1 0 0 0

1 0 1 0

1 2 1 0

where deg(Pi) ≤ d for all 1 ≤ i ≤ s. Then

∑
i≥0

bi(S) = O(sd)n

This has been generalized to other types of semi-algebraic sets in several different

ways, for e.g. (Basu et al., 2005b; Basu et al., 1996; Barone and Basu, 2012; Basu

and Rizzie, 2018). Once again, (Basu et al., 2005a; Basu, 2017) are good surveys on

this topic.

2.2 Applications of Bounds on Betti Numbers

As mentioned earlier, Betti numbers quantify the topological complexity. Heuris-

tically, larger the Betti numbers, more complex an object is. This is underscored in

one of the first applications of the bounds of the form in Theorem 2.1.1 in proving

lower bounds in theoretical computer science. Specifically, it is in regard to proving

lower bounds on the height of algebraic computation trees.
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Input: X, Y

f1 ← X ∗X

f2 ← 2 ∗ f1

f3 ← Y ∗ Y

f4 ← f2 − f3

f5 ← f4

“YES”

2X
2 −

Y
2 <

0

“NO”

2X2 − Y 2 = 0

“YES”

2X
2
−
Y 2
>

0

Computation Node

Branch Node

Leaf Node

Figure 2.3.: An example of an algebraic computation tree for testing membership in
{(X, Y ) ∈ R2 | 2X2 − Y 2 6= 0}

An algebraic computation tree is computational model that represents the steps

a Turning machine might take. An example is depicted in Figure 2.3. Consider the

following problem: given an input point x ∈ Rn, determine if x ∈ S ⊆ Rn, where S

is semi-algebraic. The algebraic computation tree for this problem will be such that

on the input x, the tree accepts x if and only if the computation terminates at a leaf

node that is an accepting node, and x ∈ S if and only if the tree accepts x.

In (Ben-Or, 1983) it was proved that the depth of an algebraic computation tree

testing membership in S must be Ω(log b0(S)). Subsequently, this result was extended

in (Yao, 1997) where a lower bound was given based on any Betti number, not just
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the 0-th. However, Yao’s result was in terms of the Borel-Moore Betti numbers. A

survey of the results along this direction is available in (Bürgisser and Cucker, 2004).

Relatively recently, the following bound was proved in (Gabrielov and Vorobjov,

2017), which proved a bound based on the individual singular betti numbers.

Theorem 2.2.1 ((Gabrielov and Vorobjov, 2017)) The height of any algebraic

computation tree for deciding membership in a semi-algebraic set S ⊆ Rn is bounded

from below by
c1 log bi(S)

i+ 1
− c2n,

where bi is the i-th Betti number w.r.t. singular homology, and c1, c2 are some positive

constants.

The intuition behind these types of bounds is that if S is topologically complicated,

then the algebraic computation tree working with S must have larger depth.

In addition to lower bounds in computational complexity theory, bounds on Betti

numbers have historically had applications in a number of other areas as well (Good-

man and Pollack, 1986a; Goodman and Pollack, 1986b). Since about a decade ago,

these bounds have been crucial in a tremendous number of problems in discrete ge-

ometry.

2.2.1 Discrete geometry applications

The seminal paper (Guth and Katz, 2015) introduced algebraic geometry tech-

niques to solve two fundamental open questions in discrete geometry – the distinct

distances problem proposed by Erdős, and the joints problem proposed by Bernard

Chazelle. One of their techniques, called the polynomial partitioning technique, has

been very influential. Below, we shall state a generalization of the polynomial parti-

tioning technique, proved in (Guth, 2015).

Theorem 2.2.2 ((Guth and Katz, 2015; Guth, 2015)) Let Γ be a finite set of

k-dimensional varieties in Rn, each defined by at most m polynomial equations, of



17

degree at most d. For any D ≥ 1, there is a non-zero polynomial P of degree at most

D, so that for each connected component C of Rn \ Z(P ),

|Γ ∩ C| ≤ Cd,m,n
|Γ|
Dn−k .

At a high level, the polynomial partitioning technique (see Figure 2.4 for an ex-

ample illustration) really gives us a divide and conquer technique – it allows you to

break your space into pieces and solve a problem on each piece, and then put to-

gether the local solutions to get the global answer. While there already were older

partitioning techniques in discrete geometry called cuttings and simplicial partition-

ing, polynomial partitioning is simpler and more powerful in higher dimensions. The

polynomial partitioning technique has been a panacea for a huge number of problems

in discrete geometry (Guth and Katz, 2015; Kaplan et al., 2012a; Solymosi and Tao,

2012; Kaplan et al., 2012b), and continues to be at the core of very recent fundamen-

tal advances (Aronov et al., 2019; Agarwal et al., 2019). To interpret Theorem 2.2.2,

we need the following theorem proved in (Barone and Basu, 2016).

C1

C2

C3

C4C5

Elements of Γ

Z(P )

Figure 2.4.: Example illustration of polynomial partitioning. The zero set of P breaks
R2 into five connected components – C1, . . . , C5. Each Ci is intersected by a subset of
varieties in Γ.
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Theorem 2.2.3 ((Barone and Basu, 2016)) Let P1, . . . , Ps ∈ R[X1, . . . , Xn] such

that for all 1 ≤ i ≤ s, deg(Qi) ≤ di. Let ki be an upper bound on the real dimension

of Z({Q1, . . . , Qi}) (by convention ki≤0 = n). Suppose that

2 ≤ d1 ≤ d2 ≤
1

n+ 1
d3 ≤

1

(n+ 1)2
d4 ≤ . . . ≤ 1

(n+ 1)s−2
ds.

Then,

b0(Z(Q1, . . . , Qs)) ≤ O(1)sO(n)2n

( ∏
1≤j≤s

d
kj−1−kj
j

)
dks−1
s .

A corollary of the above theorem (called a ‘Real-analogue’ of Bezout’s inequality),

which was also re-proved using different techniques in (Solymosi and Tao, 2012) is

below.

Corollary 2.2.1 ((Barone and Basu, 2016; Solymosi and Tao, 2012)) Let γ be

a k-dimensional real algebraic set in Rn defined by at most m polynomial equations,

each of degree at most d. If P is a polynomial of degree at most D, then γ intersects

at most Cd,m,nD
k different connected components of Rn \ Z(P ).

We are now in a position to interpret Theorem 2.2.2. We know that given a

polynomial P of degree D in Rn, Rn \ Z(P ) can have at most ∼ Dn connected com-

ponents. Also, Corollary 2.2.1 proves that of these Dn connected components, each

k-dimensional γ intersects at most Dk of them. The polynomial partioning theorem

says that given any finite set Γ of k-dimensional varieties, there exists a polynomial

such that the variety-connected-component intersections are equidistributed. In other

words, each γ ∈ Γ can intersect at most Dk connected components of Rn \ Z(P ), so

there are at most a total of |Γ|Dk such intersections possible, and that P ensures

that these intersections are equidistributed amongst the Dn connected components of

Rn \ Z(P ), i.e. there are at most |Γ|D
k

Dn
varieties intersecting each connected compo-

nent. While not stated this way, Theorem 2.2.2 quite obviously holds if Γ is a finite

set of semi-algebraic sets as well, not just real algebraic varieties.
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Thus we see that bounds of the type in Theorem 2.2.3 and Corollary 2.2.1 are

a crucial ingredient for polynomial partitioning. Motivated by this, and many other

applications in discrete geometry (Matoušek and Patáková, 2015), studying bounds

on the Betti numbers of semi-algebraic sets has remained an active field of study.

2.3 Betti numbers of definable sets

Parallel to the thrust to study incidences between algebraic and semi-algebraic

sets, incidences between definable sets over arbitrary o-minimal expansions of R has

become an active research area as well, for example (Basu and Raz, 2017a; Chernikov

and Starchenko, 2018; Chernikov et al., 2020; Chernikov et al., 2016). The progress

along this direction has been significantly slower; each of these results use idiosyncratic

techniques which don’t really suggest methods of attack for other problems.

One matter that has stymied progress is the unavailability of a polynomial par-

titioning type result for definable sets. Needless to say, an o-minimal polynomial

partitioning theorem would enable progress on a lot of different fronts, and would po-

tentially provide greatly simplified proofs of already proved results. As explained in

Section 2.2.1, we need bounds on the Betti numbers of certain kinds of semi-algebraic

sets to prove polynomial partitioning theorems. The next chapter answers precisely

this question – given a definable set γ, provide bounds on the Betti numbers of γ re-

stricted to the zero sets of polynomials with growing degree in terms of the dimension

of gamma, the ambient dimension and the degree of the polynomial.

There has also been some previous work on Betti number bounds in o-minimal

geometry. For instance, (Basu, 2009) generalizes many quantitative bounds already

known for semi-algebraic sets to the case of definable sets. The premise of this work is

that when one has a finite set of polynomials each of different degree, the dependence

of the quantitative bounds on the cardinality of the set of polynomials is more crucial

than the degrees of the polynomials.
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3 ZEROS OF POLYNOMIALS ON DEFINABLE HYPERSURFACES

3.1 Introduction

3.1.1 Existence of pathologies

A classical fact from algebraic geometry states that given two real algebraic curves

Γ and Z, if their intersection is transversal, it consists of at most deg(Γ)·deg(Z) many

points. In particular, if we fix the first curve, we can say that there is a function

βΓ,0 : N → N such that for every polynomial p of degree d, if Γ and Z(p) = {p = 0}

intersect transversally, then:

#(Γ ∩ Z(p)) ≤ βΓ,0(d) = deg(Γ) · d. (3.1)

If we leave the semialgebraic world, but still remain in the definable setting, still such

a function βΓ,0 exists, but in general nothing can be said about its behavior. Here by

definable we mean the class of definable sets in an o-minimal expansion of the real

numbers, for example the o-minimal structure generated by semianalytic functions.

(We refer the reader who is unfamiliar with o-minimal geometry to (van den Dries,

1998; Coste, 2000a) for easy to read introductions to the topic.)

In this direction Gwoździewicz, Kurdyka and Parusiński (Gwoździewicz et al.,

1999) have proved that for every sequence {ad ≥ 0}d∈N of natural numbers there exists

a definable curve Γ, a subsequence {adm}m∈N and a sequence {pm}m∈N of polynomials

of degree deg(pm) = dm such that:

#(Γ ∩ Z(pm)) ≥ adm .



21

X

M
YN

ψ

Figure 3.1.: Illustration of an ambient diffeotopy. The manifold pairs (M, X) are
ambient diffeotopic to (N, Y).

(In this paper we will show that the curve Γ ⊂ RP 2 can be taken to be regular,

definable and compact and that the polynomials pdm can be chosen in such a way

that the intersection Γ ∩ Z(pdm) is transversal, i.e. stable under small perturbations

of the polynomial.)

In particular this shows that, for a fixed definable Γ ⊂ RP 2, there is in general

no upper bound on the number of zeroes of a polynomial p on Γ which is polynomial

in deg(p). Generalizing this we will show that in higher dimensions the situation is

even more interesting.

To state our first result, we will say that two manifold pairs (M,X) and (N, Y ) are

ambient-diffeotopic if there exists a diffeomorphism ψ : M → N such that ψ(X) = Y ;

in this case we write (M,X) ∼ (N, Y ). This notion essentially says that X and Y

are diffeomorphic and, up to a diffeomorphim, they are embedded in their ambient

spaces in the same way. See Figure 3.1 for an illustration.

Of course, when Γ is an algebraic hypersurface and p is a polynomial, there are

restrictions on the possible pairs (Γ, Z(p)∩Γ) (for example Betti numbers of Z(p)∩Γ

grow at most as a polynomial in deg(p)). Pick now a sequence of smooth and compact

hypersurfaces Z1, Z2, . . . ⊂ Rn−1. Our first Theorem says that (up to extracting

subsequences) there exists a regular definable hypersurface Γ ⊂ RP n such that each
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manifold Zd is diffeomorphic to a component of the zero set on Γ of some polynomial

of degree d. Here (and in the rest of the paper) Γ will be semianalytic in RP n. More

precisely, we will prove the following.

Theorem 3.1.1 (Existence of pathologies) Let {Zd}d∈N be a sequence of smooth,

compact hypersurfaces embedded in Rn−1. There exist a regular1, compact, semiana-

lytic hypersurface Γ ⊂ RP n, a disk D ⊂ Γ and a sequence {pm}m∈N of homogeneous

polynomials of degree deg(pm) = dm such that the intersection Z(pm)∩Γ is transversal

and:

(D,Z(pm) ∩D) ∼ (Rn−1, Zdm) for all m ∈ N.

Remark 3.1.1 Note that in the case n = 2 this implies the statement of (Gwoździewicz

et al., 1999). In fact, we can take for Zd = {x1, . . . , xad} ⊂ R a set consisting of ad

many points. Then we find a smooth definable curve Γ ⊂ RP 2, an interval I ⊂ Γ and

a sequence of polynomials pm of degree dm such that the manifold pairs (I, Z(pm)∩ I)

and (R, {x1, . . . , xadm}) are diffeomorphic, in particular Z(pm)∩Γ consists of at least

adm many points.

In higher dimensions we can measure the complexity of a manifold by its Betti num-

bers. If Γ ⊂ RP n is a regular, compact, definable hypersurface, for every 0 ≤ k ≤ n−2

let βΓ,k : N→ N be the function:

βΓ,k(d) = max
deg(p)=d

bk(Γ ∩ Z(p))

(here bk denotes the k-th Betti numbe). When Γ is semialgebraic, we have

βΓ,k(d) ≤ cΓ · dn−1 (semialgebraic case) (3.2)

for some constant depending on Γ (this estimate actually requires some nontrivial

work if Γ is singular, and it is proved in (Basu and Rizzie, 2018, Theorem 6.4)). On

1Throughout the paper the word “regular” will mean “of regularity class Ck for some fixed k ≥ 2”.
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the other hand, as for the case of curves, there is no way to control the behavior of

this function for a general definable Γ : in fact, given a sequence {ad}d∈N, if we chose

a sequence of hypersurfaces {Zd} with bk(Zd) ≥ ad, for the hypersurface Γ provided

by Theorem 3.1.1 the function βΓ,k grows at least as fast as adm .

Remark 3.1.2 Estimates like (3.1) are basic building blocks in recent advances in

incidence problems in the area of discrete geometry driven by the polynomial parti-

tioning method (Guth and Katz, 2015) (see for example (Solymosi and Tao, 2012,

Theorem A.2)). Recently, using different techniques such incidence results have been

generalized from the semi-algebraic case to more general situations – namely, inci-

dences between definable sets over arbitrary o-minimal expansions of R, see (Basu and

Raz, 2017a; Chernikov et al., 2020). In order to extend the polynomial partitioning

technique to the o-minimal situation (as noted in (Basu and Raz, 2017b)) it is impor-

tant to study the function βΓ,k where Γ is now an arbitrary definable hypersurface in

an o-minimal structure (rather than just semi-algebraic). On one hand Theorem 3.1.1

seems to rule out the use of polynomial partitioning for incidence problems involving

definable sets in arbitrary o-minimal structures, but on the other hand we also prove

(see Theorem 3.1.2 below) that the pathological behavior exhibited in Theorem 3.1.1 is

very rare, and this gives some hope that a modified version of the technique can still

be applicable to incidence questions.

3.1.2 Pathologies are rare

Given Γ, it is natural to ask how “stable” are the polynomials having the “patho-

logical” behaviour of Theorem 3.1.1? In other words, if it is certainly true that nothing

can be said on the function βΓ,k that bounds the Betti numbers of transversal intersec-

tion between a definable hypersurface Γ and the zero set of a polynomial in terms of

the degree of the polynomial, is it possible to say that for “most polynomials” a poly-

nomial upper bound still holds true for the Betti numbers? Our second result gives
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an affirmative answer to this question, after the naive idea of “most polynomials” is

made precise.

To make these questions precise, on the space Wn,d of homogeneous polynomials

of degree d in n + 1 variables we introduce a natural Gaussian measure, called the

Kostlan measure, defined by choosing each coefficient of

p =
∑
|α|=d

ξα

(
d

α

)1/2

xα0
0 · · · xαnn

independently from a standard Gaussian distribution (i.e. ξα ∼ N(0, 1)). This mea-

sure is the restriction, to the space of real polynomials, of the Fubini-Study measure.

The scaling coefficients
(
d
α

)1/2
are chosen in such a way that the resulting prob-

ability distribution is invariant under orthogonal change of variables (there are no

preferred points or direction in RP n, where zeroes of p are naturally defined). More-

over, if we extend this probability distribution to the whole space of complex polyno-

mials, by replacing real with complex Gaussian variables, it can be shown that this

extension is the unique Gaussian measure which is invariant under unitary change

of variables. This makes real Kostlan polynomials a natural object of study. (This

model for random polynomials received a lot of attention since pioneer works of Edel-

man, Kostlan, Shub and Smale (Edelman and Kostlan, 1995; Shub and Smale, 1993b;

Edelman et al., 1994; Kostlan, 2002; Shub and Smale, 1993c; Shub and Smale, 1993a)

on random polynomial systems solving.)

The next Theorem estimates the size of the set of polynomials whose restriction

to a definable hypersurface Γ ⊂ RP n have a behaviour that deviates from the semi-

algebraic case estimate (3.2). This result could be potentially useful in the study

of incidence questions over o-minimal structures (cf. Remark 3.1.2). We observe,

however, that for this theorem we do not need Γ to be definable (in fact it is enough

that it is regular).
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Theorem 3.1.2 Let Γ ⊂ RPn be a regular and compact hypersurface, and let p be a

random Kostlan polynomial of degree d. Then there exists a constant cΓ such that for

every 0 ≤ k ≤ n− 2 and for every t > 0

P
[
bk(Γ ∩ Z(p)) ≥ tdn−1

]
≤ cΓ

td
n−1
2

.

Combining this result with the construction of Theorem 3.1.1 we obtain the following

estimate for the Gaussian volume of the set of “pathological” polynomials. The lower

bounds follows from the fact that the intersection Z(pm) ∩ Γ produced in Theorem

3.1.1 is transversal (hence stable under small perturbations of the polynomial pm).

Corollary 3.1.1 (Pathologies are rare) Given a sequence of natural numbers, i.e.

{ad}d∈N, let {Zd}d∈N be a sequence of hypersurfaces with bk(Zd) ≥ ad for all d ∈ N.

Consider the hypersurface Γ ⊂ RPn provided by Theorem 3.1.1. Then, for some

constant cΓ > 0:

0 < P [bk(Γ ∩ Z(p)) ≥ adm ] ≤ cΓd
n−1
2

m

adm
.

Remark 3.1.3 Markov’s inequality gives an upper bound on the probability that a

non-negative random variable takes values in the tail. Specifically, for a non-negative

random variable X, we have that P [X > a] ≤ EX
a
. The conclusion of Theorem 3.1.2

follows after combining Markov’s inequality with the following fact (proved in Propo-

sition 3.3.2): there exists a universal constant ck,n > 0 such that for every Γ ⊂ RP n

regular, definable, compact hypersurface

Ebk(Γ ∩ Z(p)) ≤ |Γ|ck,nd
n−1
2 +O(d

n−2
2 ), (3.3)

where |Γ| denotes the volume of Γ, induced by restricting the Riemannian metric of

RP n, and the implied constants in the O(d
n−2
2 ) depends on Γ.

Remark 3.1.4 The content of (3.3) reveals an interesting and surprising property of

the space of polynomials: by Theorem 3.1.1 there is a priori no upper bound on the
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homological complexity of Γ ∩ Z(p) (as a function of d = deg(p)), but on average we

cannot exceed a polynomial bound. Here is an example from (Khazhgali Kozhasov,

2017) of a similar phenomenon that appears in the study of random enumerative ge-

ometry. If X1, . . . , X4 are boundaries of smooth convex bodies in RP 3, one can ask for

the number `(X1, . . . , X4) of lines that are simultaneously tangent to all of them. This

number is finite if the convex bodies are in general position in the projective space, but

it can be arbitrarily large: for every m > 0 one can find X1, . . . , X4 ⊂ RP 3 in general

position such that there are at least m lines tangent to all of them. On the other hand

(here is the surprising thing) there exists a constant c > 0, independent of the convex

bodies, such that if we now average over all their possible configurations using the ac-

tion of the orthogonal group O(4) on RP 3, we get Eg1,...,g4∈O(4)`(g1X1, . . . , g4X4) = c.

Here again there is no a priori upper bound, but there is an upper bound on average.

Remark 3.1.5 (The zero-dimensional case) Another case of interest, on which

we can say more, is the case when Γ ⊂ RP n is k-dimensional and we consider the

common zero set of k polynomials on it. In this case we do not have to restrict to

Kostlan polynomials and we can work with the more general class of random invari-

ant polynomials: these are centered Gaussian probability measure on Wn,d which are

invariant under the action of the orthogonal group by change of variables (of course

the Kostlan measure is one of them). These measures have been classified by Kostlan

(Kostlan, 1993) and depend on bd
2
c many parameters. Consider now the common

zero set X of independent random invariant polynomials p1, . . . , pk on Γ:

X = Γ ∩ Z(p1) ∩ · · · ∩ Z(pk).

With probability one X is zero-dimensional and we can use integral geometry (see

(Howard, 1993) or the appendix of (Burgisser and Lerario, 2018)) to deduce that:

E# (Γ ∩ Z(p1) ∩ · · · ∩ Z(pk)) =
|Γ|
|RP k|

k∏
j=1

E
|Z(pj)|
|RP n−1|

. (3.4)
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The quantity E|Z(p)| appearing in (3.4) can be evaluated using the definition of the

invariant distribution in terms of its weights (see (Kostlan, 1993; Fyodorov et al.,

2015)); when p is a Kostlan polynomial of degree d, then E|Z(p)| =
√
d|RP n−1|.

More generally (again by Integral Geometry) this expectation is bounded by E|Z(p)| ≤

d|RP n−1|. If each pi has now degree d, we can apply Markov’s inequality again and

deduce that there exists cΓ > 0 such that for any invariant Gaussian measure on the

space of polynomials:

P{#(Γ ∩ Z(p1) ∩ · · · ∩ Z(pk)) ≥ tdk−1} ≤ cΓ

t
,

i.e., the probability of deviating from a Bézout-type bound is small.

3.2 Pathological examples: Proof of Theorem 3.1.1

3.2.1 Construction of Gwoździewicz et al.

Theorem 3.1.1 is a generalization of a result proved in (Gwoździewicz et al., 1999).

Below we state the theorem and describe the proof.

Theorem 3.2.1 For analytic f : (a,∞)→ R, let A(d) denote the number of isolated

solutions to the system P (x, y) = 0, y = f(x), x > a. If we are given a sequence

N 3 d→ a(d) ∈ N, then there exists an analytic function f : (a,∞)→ R, subanalytic

at infinity, and an increasing sequence k → dk of integers such that

a(dk) ≤ A(dk),

for all k ∈ N.

Proof One can easily construct by induction: a sequence bk ∈ N, two sequences

εk > 0, ηk > 0, and a sequence of Polynomials

Pk = c1+bkt
1+bk + . . .+ cbk+1

tbk+1
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such that

1. For all k ∈ N,

‖Pk‖ ≤ εk,

where ‖ · ‖ is the sum of absolute value of coefficients.

2. if r : (0, 1)→ R is continuous, supt∈(0,1) |r(t)| ≤ ηk, then

|{t ∈ (0, 1) : Pk(t) + r(t) = 0}| ≥ a(4bk).

3. For all n ∈ N, ∑
k>n

εk < ηn.

Below is how we can construct our sequences:

(Step 1) Choose any ε1 > 0, b1 ∈ N. Initialize ε2 = ε3 = . . . =∞. Let i = 1.

(Step 2) Choose any bi+1 ≥ a(4bi) + 2, and constants c1+bi , . . . , cbi+1
such that the

polynomial p1(t) = c′1+bi
t1+bi + . . .+ c′bi+1

tbi+1 has at least a(4bi) + 2 zeros in

(0, 1). Scale the co-efficients to form c1+bi , . . . , cbi+1
such that |c1+bi |+ . . .+

|cbi+1
| ≤ εi. Let

Pi(t) = c1+bit
1+bi + . . .+ cbi+1

tbi+1 .

(Step 3) Define

νi = inf
v∈critical-points-in-(0,1) of Pi

Pi(v),

and set

ηi = min
(
νi, e

−i).
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The value νi can be found by considering the system {y− f(x) = 0; f ′(x) =

0} and obtaining a lower bound on the absolute value of the non-zero roots

of Rest(y − Pi(t), P ′i (t)).

(Step 4) For each j ≥ 1, update

εi+j = min
(
εi+j,

ηi
2j+1

)
.

(Step 5) i = i+ 1. GOTO Step 2.

Now let

g(t) =
∞∑
k=1

Pk(t).

Because εi+j ≤= ηi
2j+1 , we have that

∑
j>=1

εi+j ≤
ηi
2
< ηi.

Also, we have that

lim sup
n→∞

|cn|1/n < lim
n→∞

η
1/n
n ≤ (e−n)

1/n < 1,

which ensures that the radius of convergence of g(t) is > 1. Finally put

f(x) = g

(
x√
x2 + 1

)
, x > 0,

and let

qk(t, y) = y −
k−1∑
n=1

Pn(t), k > 2.

qk is of degree ≤ bk.

Clearly, every t ∈ (0, 1) has a corresponding yt such that qk(t, yt) = 0. g(t) =

Pk(t) + continuous function, so there are at least a(4bk) zeros for t ∈ (0, 1). Thus we

can say that qk(t, y) has at least a(4bk) zeros on the graph of g(t), for t ∈ (0, 1).
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qk

(
x√
x2+1

, y
)

is a rational function that looks like this:

y − a0 − a1
x√
x2 + 1

− a2

(
x√
x2 + 1

)2

− a3

(
x√
x2 + 1

)3

− . . .− abk
(

x√
x2 + 1

)bk
.

Now, multiply through by (
√
x2 + 1)bk to get

y(
√
x2 + 1)bk − a0(

√
x2 + 1)bk − a1x(

√
x2 + 1)bk−1− a2x

2(
√
x2 + 1)bk−2− . . .− abkxbk .

Now, whenever the power of
√
x2 + 1 is odd, we will have a leftover

√
x2 + 1. To

eliminate the square root term, we just collect all the square root terms on one side

and square. Thus the degree of the polynomial will be the degree of the monomial(
y(
√
x2 + 1)bk

)2
which is 2 + 2bk ≤ 4bk. Thus, it is easy to find a polynomial Qk(x, y)

of degree ≤ dk = 4bk which vanishes on the zeros of qk

(
x√
x2+1

, y
)

.

Since Qk has at least a(dk) zeros on the graph of f , it follows that a(dk) ≤ A(dk),

as desired.

3.2.2 Some basic facts

For the next proof we will need a few elementary facts from differential topology

and real algebraic geometry. First, if D ⊂ Rn−1 is a disk and f : D → R is a regular

function, we define:

‖f‖C1(D,R) = sup
z∈D
‖f(z)‖+ sup

z∈D
‖∇f(z)‖.

If “zero” is a regular value of f , then Z(f) is a regular hypersurface in D. If Z ⊂ Rn−1

is a regular compact hypersuface we will write

(D,Z(f)) ∼ (Rn−1, Z)
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+ =

Figure 3.2.: An illustration of the Thom isotopy lemma – if the perturbation is small,
then the zero set is topologically the same

to denote that the two pairs (D,Z(f)) and (Rn−1, Z) are diffeomorphic. In this setting

there exists δ > 0 (depending on f) such that given any regular function h : D → R

with ‖h‖C1(D,R) ≤ δ, “zero” is a regular value of f + h and:

(D,Z(f + h)) ∼ (Rn−1, Z)

(in particular the zero sets of f and h are diffeomorphic). We will (loosely) refer

to this fact as Thom’s isotopy Lemma. Figure 3.2 contains an illustration in the

2-dimensional case.

We will also need the following classical approximation result from real algebraic

geometry, due to Seifert (Seifert, 1936). Given a regular, compact hypersurface Z ⊂

D ⊂ Rn−1, there exists a polynomial q : Rn−1 → R such that “zero” is a regular value

of q and

(D,Z(q)) ∼ (Rn−1, Z).

This follows from Weirstrass’ approximation Theorem; the reader can see (Kollár,

2017, Special case 5) for an elementary proof of Seifert’s result.

Proof [Proof of Theorem 3.1.1] Let e1 = (1, 0, . . . , 0) ∈ Rn−1 and consider the two

disks D1 = D(e1,
1
2
) and D2 = D(e1,

2
3
).

Pick Z1 and consider a polynomial2 q2 such that:

(D1, Z(q2) ∩D1) ∼ (Rn−1, Z1).

2We start with q2 and not q1, but the shift of the indices will be convenient to simplify the notation
later.
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Observe that, since ‖x‖2 does not vanish on D1, “zero” is also a regular value for

Q2 = c2‖x‖2q2|D1 for every positive constant c2 > 0, and:

(D1, Z(Q2) ∩D1) ∼ (Rn−1, Z1).

(In the course of the proof we will pick a sequence of constants {ck > 0}k∈N that will

only be specified later.) Call d2 the degree of Q2 and observe that Q2 only contains

monomials xα1
1 · · ·x

αn−1

n−1 with 2 ≤ |α| ≤ d2. (We set d1 = 1.)

By Thom’s isotopy Lemma, associated to the function Q2 : D1 → R there is a

δ2 > 0 such that for any other continuously differentiable function h : D1 → R with

‖h‖C1(D,R) ≤ δ2 we have that the equation Q2 + h = 0 is regular on D1 and the pair

(D1, Z(Q2 + h) ∩D1) is isotopic to the pair (D1, Z(Q2) ∩D1).

Let now k ≥ 2 and consider Zdk . Pick a polynomial qk+1 such that “zero” is a

regular value for qk+1|D1 and:

(D1, Z(qk+1) ∩D1) ∼ (Rn−1, Zdk).

As before, observe that “zero” is also a regular value for Qk+1 = ck+1‖x‖2dkqk+1|D1 ,

for any positive constant ck+1 > 0 and:

(D1, Z(Qk+1) ∩D1) ∼ (Rn−1, Zdk).

Again, as before by Thom’s isotopy Lemma, associated to the function Qk+1 :

D1 → R there is a δk+1 > 0 such that for any other continuously differentiable function

h : D1 → R with ‖h‖C1(D,R) ≤ δk+1 we have that the equation Qk+1 +h = 0 is regular

on D1 and the pair (D1, Z(Qk+1 +h)∩D1) is isotopic to the pair (D1, Z(Qk+1)∩D1).

Moreover, calling dk+1 = deg(Qk+1), we have that Qk+1 only contains monomials with

total degree 2dk ≤ |α| ≤ dk+1.
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We choose the sequence of constants {ck > 0} at every step in such a way that

‖Qk+1‖C1(D1,R) ≤ min{δ1, . . . , δk}2−(k+1)

and that the power series
∑

k≥2Qk converges on the disk D2.

Let now ρ : Rn−1 → [0,∞) be a definable, regular, cut-off function such that

ρ|D1 ≡ 1 and ρ|Dc2 ≡ 0 and define the function g : D2 → R by:

g(x) =

(∑
k≥2

Qk(x)

)
· ρ(x).

We set Γ̂ = graph(g) ⊂ Rn and extend this to a regular, compact definable

manifold Γ ⊂ Rn. Note that the function ρ can be taken to be a restricted analytic

function, and this will make Γ semianalytic in RP n. The set D ⊂ graph(g) ⊂ Γ will

be the homeomorphic image of D1 under the “graph” map x 7→ (x, g(x)).

Let P1(x, y) = y and for every k ≥ 2 define Pk(x, y) = y −
∑k

j=2 Qj(x). Observe

that the degree of Pk is dk. For every k ≥ 1 we consider now the (equivalent) systems

of equations:

{y − g(x) = 0 = Pk(x, y)} ⇐⇒
{
y − g(x) = 0 = Qk+1(x) +

∑
j≥k+2

Qj(x) = 0

}

(the equivalence is obtained by eliminating y from the second equation using the first

one). The set of solutions to these systems in D coincides with Z(Pk) ∩D.

Observe now that: ∥∥∥∥ ∑
j≥k+2

Qj

∥∥∥∥
C1(D,R)

≤
∑
j≥k+2

δk
2j
≤ δk.
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In particular, since the equation Qk+1 = 0 was regular on D1, also the equation

Qk+1 +
∑

j≥k+2Qj = 0 is regular on D1 and we have:

(
D1, Z

(
Qk+1 +

∑
j≥k+2

Qj

)
∩D1

)
∼ (D1, Z(Qk+1) ∩D1) ∼ (Rn−1, Zdk).

As a consequence the system {y − g(x) = 0 = Pk(x, y)} is regular on D1 × R and

under the graph map we have:

(D,Z(Pk) ∩D) ∼ (Rn−1, Zdk).

Finally, let pk = hPk + Rk be a homogeneous polynomial (here hPk denotes the

homogenization) whose zero set is transverse to Γ and with ‖Rk‖C1(D,R) small enough

such that

(D,Z(pk) ∩D) ∼ (Rn−1, Zdk).

(The existence of such Rk follows from the fact that the set of homogeneous polyno-

mials of a given degree whose zero set intersect Γ transversely is dense).

3.3 Estimates on the size of pathological examples: proof of Theorem 3.1.2

Theorem 3.1.2 follows immediately from Proposition 3.3.2 (proved below) after

applying Markov’s inequality. In order to proceed we will need the following technical

result. In the case Γ is a real algebraic set this was proved by Gayet and Welschinger

(Gayet and Welschinger, 2016). Our strategy of proof is also very similar, and it

essentially uses the same ideas, just adapted to the non-algebraic setting.
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Proposition 3.3.1 Let Γ ⊂ RPn be a regular, compact hypersurface and f : Γ→ R

be a Morse function. Let p be a random Kostlan distributed polynomial on RPn of

degree d. Then, denoting by Qn−2 a GOE(n− 2)3 matrix, we have:

E#{critical points of f |Γ∩Z(p)} =
|Γ|
π

d
n−1
2

(2π)
n−2
2

· E| detQn−2|+O(d
n−2
2 ).

Remark 3.3.1 Note that in the case dim Γ = 1 this can be obtained by a simple

application of integral geometry.

Proof We will use the Kac-Rice formula for Riemannian manifolds. Since the invo-

lution x 7→ −x on the sphere with the round metric is an isometry, the quotient map

q : Sn → RP n induces a Riemaniann metric on RP n for which q is a Riemannian

submersion. In this way Γ ⊂ RP n inherits a Riemannian metric as well. For every

point y ∈ Γ such that dyf 6= 0 (since Γ is compact and f : Γ → R is Morse, there

are only finitely many points where dyf vanishes) we consider an orthonormal frame

field {v1, . . . , vn−1} on a neighborhood V ⊂ Γ of y such that for all x ∈ V

ker dxf = span{v2(x), . . . , vn−1(x)}.

Let us take now an open set V ⊂ Γ which is contained in the open set {x0 6=

0} ⊂ RP n (this is true after possibly shrinking V and relabeling the homogeneous

coordinates [x0, . . . , xn] in RP n). Let p̃ : {x0 6= 0} → R be the random function

defined by p̃(x0, x1, . . . , xn) = p(1, x1/x0, . . . , xn/x0) and denote by p̂ its restriction to

V : p̂ = p̃|V (thus p̂ is a random function on the Riemannian manifold V ⊂ Γ ⊂ RP n).

Define the random map F : V → Rn−1 by:

F (x) = (p̂(x), dxp̂v2(x), . . . , dxp̂vn−1(x)).

3GOE(m) stands for Gaussian Orthogonal Ensemble, an ensemble of random symmetric matrices
constructed as follows: X ∈ GOE(m) is a m × m random matrix where Xi,j ∼ N (0, 1), and
Xi,i ∼ N (0, 2), see (Tao, 2012).



36

If the gradient of p̂ does not vanish on {p = 0} ∩ V (this happens with probability

one), then {p = 0}∩V = {p̂ = 0} is a smooth submanifold of Γ. We claim that, with

probability one, the number of critical points of f |{p=0}∩Γ in V equals the number

of zeroes of F . In fact, with probability one, none of the critical points of f lies on

{p = 0} and in this case a point x ∈ V is critical for f |{p=0}∩Γ if and only if p̂(x) = 0

and the gradients of p̂ and f are collinear at x, i.e. p̂(x) = 0 and ker dxp̂ = ker dxf ,

which is equivalent to F (x) = 0.

Let us denote by ω the volume density of Γ. Then the Kac-Rice formula for the

random field F on the Riemannian manifold Γ∩V (Adler and Taylor, 2009) tells that

for any open set W ⊂ V

E#{F = 0} ∩W =

∫
W

E
{
| det J(x)|

∣∣∣∣F (x) = 0

}
ρF (x)(0)ω(x)dx

=

∫
W

ρ(x)ω(x)dx.

where the matrix J(x) is the matrix of the derivatives at x of the components of F

with respect to an orthonormal frame (in our case the chosen frame v1, . . . , vn−1 and

ρF (x)(0) is the density at zero of the random vector F (x).

We use now the fact that the Kostlan polynomial p is invariant by an orthogonal

change of variable in RP n, hence for every x ∈ V for the evaluation of

ρ(x) = E
{
| det J(x)|

∣∣∣∣F (x) = 0

}
ρF (x)(0)

we can assume x = [1, 0, . . . , 0] = x. For simplicity let us also denote by t1, . . . , tn :

{x0 6= 0} → R the functions ti = xi/x0. Then, since the stabilizer O(n) of x acts

transitively on the set of frames at x, we can also assume that {v1(x), . . . , vn−1(x)} =

{∂1(x), . . . , ∂n−1(x)}, where we have denoted by ∂i the vector field ∂/∂ti.

For the calculation of the value of ρ(x) we use local coordinates on Γ ∩ V . Note

that (t1, . . . , tn−1) are coordinates on Γ∩V (this is because the tangent space of Γ at x

equals span{∂1(x), . . . , ∂n−1(x)}). We denote by ψ−1 : {x0 6= 0} → Rn the coordinate
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chart on {x0 6= 0} ⊂ RP n given by (t1, . . . , tn). In this chart ψ−1(Γ ∩ V ), for a small

enough V containing x, can be seen as the graph of a function g : Rn−1 → R. Since the

tangent space of ψ−1(Γ∩V ) at zero equals span{∂1, . . . , ∂n−1}, the function g vanishes

at zero, together with its differential. In this way we get a map ϕ : Rn−1 → RP n

parametrizing V given by:

ϕ(t1, . . . , tn−1) = ψ(t1, . . . , tn−1, g(t1, . . . , tn−1)).

Observe now that the frame {v1, . . . , vn−1} coincides with {∂1, . . . , ∂n−1} only at

zero; neverthless, it is easy to verify that we could pick the frame {v1, . . . , vn−1} such

that in these coordinates:

vi(t) = (1 + ti)∂i +O(‖t‖2) i = 1, . . . , n− 1.

In particular, denoting by t = (t1, . . . , tn−1), we have:

(dp̂vi)(t) = (1 + ti)∂ip̂(t, g(t)) + (1 + ti)∂np̂(t, g(t))∂ig(t) +O(‖t‖2).

From this it is immediate to see that:

F (x) = (p̂(0), (dp̂v1)(0), . . . , (dp̂vn−1)(0))

= (pd,0,...,0, pd−1,0,10,...,0, . . . , pd−1,0,...,0,1,0,...0)

(in the multi-index of the i-th entry of this vector the 1 is in position i + 1). In

particular:

ρF (x)(0) =
1

(2π)
n−1
2 d

n−2
2

Let us evaluate now the matrix J(x). For the first row r1(x) of J(x) we immediately

obtain:

r1(x) = (d0p̂v1(0), . . . , d0p̂vn−1(0)) = (ξd−1,1,...,0, ξd−1,0,10,...,0, . . . , ξd−1,0,...,0,1)
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Note that, except for the first entry, r1(x) coincides with F (x); we denote by

w = (ξd−1,0,10,...,0, . . . , ξd−1,0,...,0,1)

(i.e. the vector consisting of the last entries of the first row r1(x)).

Let us now look at the (n − 2) × (n − 2) submatrix Ĵ(x) of J(x), obtained by

removing the first row and the first column. Observe that Ĵ(x) = B+ξd−1,1,0,...,0M(x),

where B is the matrix:

B =


2ξd−2,0,2,0,...,0 ξd−2,0,1,1,0,...,0 · · · ξd−2,0,1,0...,0,1

ξd−2,0,1,1,0,...,0 2ξd−2,0,0,2,0,...,0 · · · ξd−2,0,0,1,0,...,0,1

...

ξd−2,0,1,0...,0,1 ξd−2,0,1,0,...,0,1 · · · 2ξd−2,0,...,0,2

 , (3.5)

and M(x) = (∂i∂jg(0)). From (3.5) it is immediate to see that the matrix B is a

random matrix distributed as:

B =
√
d(d− 1)Qn−2

where Qn−2 is a random GOE(n− 2) matrix. Hence

J(x) =

 ξd−1,1,0,...,0 w

∗ B + ξd−1,1,0,...,0M(x)
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From this it follows that:

E
{
| det J(x)|

∣∣∣∣F (x) = 0

}
= E

{
| det J(x)|

∣∣∣∣w = 0

}
= (d(d− 1))

n−2
2 E

{
|ξd−1,1,0,...,0| · | det

(
Qn−2 +

M(x)√
d− 1

)
|
∣∣∣∣w = 0

}
= (d(d− 1))

n−2
2 · d

1
2

√
2

π
E
∣∣∣∣det

(
Qn−2 +

M(x)√
d− 1

)∣∣∣∣ = (∗),

where in the last step we have used the fact that the random variables w, ξd−1,1,0,...,0and

Qn−2 and ξd−1,1,0,...,0 are independent. Note now that, by construction, the matrix

M(x) depends continuously on x ∈ Γ, because we have assumed that Γ is of regularity

class Ck with k ≥ 2, and since Γ is compact:

(∗) = (d(d− 1))
n−2
2 · d

1
2

√
2

π

(
E| det(Qn−2)|+O(d−1/2)

)
.

Putting all this together we obtain:

E#{F = 0} ∩W =

∫
W

E
{
| det J(x)|

∣∣∣∣F (x) = 0

}
ρF (x)(0)ω(x)dx

=

∫
W

(d(d− 1))
n−2
2

(2π)
n−1
2 d

n−2
2

· d
1
2

√
2

π

(
E| det(Qn−2)|+O(d−1/2)

)
ω(x)dx

=
|W |
π

d
n−1
2

(2π)
n−2
2

· E| detQn−2|+O(d
n−2
2 ).

From this the conclusion follows.

In particular, since f |Γ∩{p=0} is Morse with probability one (using standard arguments

from differential topology it is not difficult to show that the set of such polynomials

for which f |Γ∩{p=0} is Morse has full measure), applying Morse’s inequalities4 we get

the following corollary.

4Given a compact, regular manifold Γ, and a Morse function f : Γ→ R, the k-th Betti number of Γ
is bounded by the number of critical points of f of index k.
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Proposition 3.3.2 There exists a universal constant ck,n > 0 such that

Ebk(Γ ∩ Z(p)) ≤ |Γ|ck,nd
n−1
2 +O(d

n−2
2 )

(the implied constants in the O(d
n−2
2 ) depends on Γ).

3.4 Toward an O-minimal Polynomial Partitioning Theorem?

3.4.1 Why do we not have an o-minimimal polynomial partitioning theorem?

To understand this, we need to have a working understanding of Guth’s (Guth,

2015) proof of polynomial partitioning for any set of varieties (c.f. Theorem 2.2.2).

The first step is to establish a cousin of the Borsuk-Ulam theorem.

Theorem 3.4.1 ((Guth, 2015)) Define

Xs =
s∏
j=1

S2j−1

.

Any point x ∈ Xs is going to be denoted in co-ordinates as (x1, . . . , xs), where xj ∈

S2j−1
. Also define

Flj : Xs → Xs,

which takes

(x1, . . . , xj−1, xj, xj+1, . . . , xs) 7→ (x1, . . . , xj−1,−xj, xj+1, . . . , xs).

Suppose that you have a family of continuous functions fv : Xs → R, for each v ∈

Zs2 \ {0}, that all obey the following antipodal-type condition:

fv(Fljx) = (−1)vjfv(x) for all j = 1, . . . , s.

Then there exists a point x ∈ Xs where fv(x) = 0 for all v ∈ Zs2 \ {0}.
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Let R[X1, . . . , Xn]≤D denote the vector space of polynomials in n variables of

degree at most D. For fixed n, we know that the dimension of R[X1, . . . , Xn]≤D is

∼n Dn. For each j, let Dj be such that the dimension of R[X1, . . . , Xn]≤Dj is greater

than 2j−1. We have that Dj . 2j/n. Next, pick a subspace of R[X1, . . . , Xn]≤Dj with

dimension 2j−1 + 1, and identify S2j−1
with the unit sphere in this subspace. In this

way, we get an embedding

Xs ⊆
s∏
j=1

R[X1, . . . , Xn]≤Dj .

Let D =
∑

j Dj . 2s/n. For ~P = (P1, . . . , Ps) ∈ Xs ⊆
∏s

j=1 R[X1, . . . , Xn]≤Dj , then

for any w ∈ Zs2, define the cell

O(~P ,w) = {x ∈ Rn | SignPj(x) = (−1)wj for all j ∈ {1, . . . , s}}.

Define the variables Gv(~P )

Gv(~P ) =
∑
w∈Zs2
w·v=0

∑
γ∈Γ

1
{
O(~P ,w) ∩ γ 6= ∅

}
−
∑
w∈Zs2
w·v=1

∑
γ∈Γ

1
{
O(~P ,w) ∩ γ 6= ∅

}
.

Note that the function Gv obeys the antipodal-type condition (Equation 3.4.1), i.e.

Gv(Flj ~P ) = (−1)vjGv(~P ). Of course the functions Gv : Xs → R are not continuous,

because the indicator functions aren’t. However, let’s pretend for a moment that they

are. Then Theorem 3.4.1 implies that there is a ~P∗ ∈ Xs so that Gv(~P ) = 0 for all

v ∈ Zs2 \ {0}.

Note that
∑

γ∈Γ 1
{
O( ~P∗, w) ∩ γ 6= ∅

}
counts the number of varieties γ ∈ Γ that

intersect O( ~P∗, w). It can be proved that the system of {Gv = 0}v∈Zs2 is row equivalent

to the system{∑
γ∈Γ

1
{
O( ~P∗, v) ∩ γ 6= ∅

}
−
∑
γ∈Γ

1
{
O( ~P∗,~0) ∩ γ 6= ∅

}
= 0

}
v∈Zs2

,
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thus we have that
∑

γ∈Γ 1
{
O( ~P∗, w) ∩ γ 6= ∅

}
is the same for all w ∈ Zs2. In other

words, each of the 2s cells O( ~P∗, w) would intersect the same number of varieties

γ ∈ Γ. Since by Corollary 2.2.1 we know that each γ can enter at most Cd,m,nD
k

cells, the number of varieties intersecting each cell would be at most 2−sCd,m,nD
k|Γ| ≤

CnCd,m,nD
k−n|Γ| proving Theorem 2.2.2. Obviously, we have to deal with the fact

that the Gv are not actually continuous, but this is the core of the proof.

The proof works completely at all steps if Γ contains definable sets, except for

the fact that Corollary 2.2.1 doesn’t hold anymore. In fact, as per Theorem 3.1.1, no

uniform bound even exists. This is why it has been difficult to establish an o-minimal

version of the polynomial partitioning theorem.

3.4.2 An o-minimal polynomial partitioning theorem using the probabilistic method?

candidates for

partitioning

pathological

polynomials

Suitable Partitioning Polynomial

Figure 3.3.: Illustration of desirable situation to prove an o-minimal polynomial par-
titioning theorem

While Theorem 3.1.1 is a dampener on our hopes, on the other hand, Corollary

3.1.1 shows that for most polynomials, a Bezout-type bound holds. Specifically, we

prove that for any definable hypersurface Γ ⊂ RP n, if p is a random Kostlan homoge-

nous polynomial of degree d in n+ 1 variables,

P [b0(Γ ∩ Z(p)) & dn] .
1√
dn
.
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This means that the measure of bad polynomials grows smaller with increasing de-

gree. If we are able to prove that the measure of the set of polynomials that satisfy

{Gv(P ) = 0}v∈Zs2 is strictly & 1√
dn

(maybe under some restrictions on Γ), by the

probabilistic method, we would have proved that there exists a polynomial which

desirable properties, which also does not have pathological topological complexity

on restriction to any definable hypersurface Γ, giving us a much needed o-minimal

polynomial partitioning theorem.

Question 1 Leveraging the results of (Basu et al., 2019b), prove an o-minimal

polynomial partitioning theorem using the probabilistic method.
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4 BETTI NUMBERS OF RANDOM HYPERSURFACE ARRANGEMENTS

4.1 Introduction

The quantitative study of the ‘complexity’ of arrangements of hypersurfaces in

some finite dimensional real space has a fairly long history in the area of discrete and

computational geometry (see (Agarwal and Sharir, 2000) for a survey). The main

mathematical results concern the combinatorial, as well as topological, complexities

of the so called ‘cells’ of the arrangement. A cell of an arrangement refers to a

connected component of any set obtained as the intersection of a subset of the given

hypersurfaces with the complements of the remaining hypersurfaces (so by definition

a cell is always locally closed and a full dimensional cell is open). It is worth recalling

some of these results.

Figure 4.1.: For us, an arrangement is just the union of a finite number of algebraic
sets

Given a set of s real algebraic hypersufaces in Rn each defined by a polynomial of

degree at most d, it was proved in (Basu, 2003) that for each i, 0 ≤ i < n, the sum

over all cells of the arrangement of the i-th Betti number of the cells is bounded from
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above by sn−iO(d)n. Taking i = 0, one obtains an upper bound of snO(d)n on the

number of cells of the arrangement.

The above results are deterministic. Recently, the study of the expected topology

of real varieties or semi-algebraic sets defined by randomly chosen real polynomials

has assumed significance (see for example, (Gayet and Welschinger, 2015; Fyodorov

et al., 2015; Burgisser and Lerario, 2018)). In this paper we initiate the study of quan-

titative properties of arrangements of real hypersurfaces from a random viewpoint in

the same spirit as in the papers referred to above. We study the topological complex-

ity of arrangements of s randomly chosen hypersurfaces of degrees d1, . . . , ds. The

probability measure on the space of polynomials, according to which the polynomials

are chosen, is the well known Kostlan distribution, which is a Gaussian distribution

on the real vector space of homogeneous polynomials of a fixed degree (equipped with

an inner product) (Edelman and Kostlan, 1995; Kostlan, 1993). Specifically, on the

space of homogenous polynomials of degree d in n + 1 variables, a Kostlan form is

defined as

P (x) =
∑

(α0,...,αn)∑n
i=0 αi=d

ξαx
α0
0 . . . xαnn ,

where ξα ∼ N
(

0, d!
α0!...αn!

)
are independently chosen. The variances are chosen in

such a way that the resulting probability distribution is invariant under an orthog-

onal change of variables, meaning that there are no preferred points or direction in

RP n, where the zeros of p are naturally defined. Moreover, if we extend this distri-

bution to the space of complex polynomials by replacing real with complex Gaussian

variables, it can be shown that this extension is the unique (up to multiples) Gaus-

sian measure which is invariant under unitary change of variables, thus making real

Kostlan polynomials a natural object of study.

Here we deviate slightly from the usual convention in the literature in discrete

and computational geometry, and consider arrangements of hypersurfaces in real pro-

jective space RP n rather than in Rn (since the orthogonal invariance of the Kostlan

measure is meaningful only over the projective space). However, asymptotically it
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does not make a difference, whether we consider arrangements over affine or projective

spaces.

We consider two variants of the problem of bounding the topological complexity of

an arrangement of random real algebraic hypersurfaces in RP n with specified degrees.

Our first result outlined in §4.1.1 treats the problem in full generality without any

restriction on the degrees (cf. Theorem 4.1.1). We then study the case when all the

degrees are assumed to be equal to 2 (outlined in §4.1.2). This is the first non-trivial

case, since for an arrangement of hyperplanes (i.e. with all degrees equal to one), the

expected value of the topological complexity will coincide with that of deterministic

generic arrangements. Since, it is known that the growth of the Betti numbers of semi-

agebraic sets defined by quadratic polynomials show different behavior compared to

that of general semi-algebraic sets (see (Barvinok, 1997; Basu et al., 2010; Lerario,

2016; Basu and Rizzie, 2018) for the deterministic case and (Lerario, 2015; Lerario

and Lundberg, 2016) in the random setting), it could be expected that the average

topological complexity of arrangements consiting of quadric hypersurfaces would be

smaller than in the general case (at least in the dependence on the number s of

hypersurfaces). We have partial results (outlined in §4.1.2) showing that this is indeed

the case. While the (n−1)-dimensional Betti number of the complement of a union s

hypersurfaces of degree d ≥ 2 in RP n grows proportionally with s in the deterministic

case, we show that in the random case with d = 2 the expected value of the same is

o(s) (cf. Theorem 4.1.2).

In order to prove Theorem 4.1.2, we study the behavior of a special kind of geomet-

rically defined graph from a random viewpoint (outlined in §4.1.3). The geometric

graph that we study is a special case of the more general graphs defined by semi-

algebraic relations which has been widely studied in combinatorics (see for example

(Alon et al., 2005)). In our case the semi-algebraic relation defining the graph is par-

ticularly simple and geometric, and hence we believe that study of this model could

be of interest by itself. We fix a convex semi-algebraic subset subset P ⊂ RPN and

sample independent points q1, . . . , qs from the uniform distribution on RPN , and we
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put an edge between vi and vj, if and only if i 6= j and the line connecting qi and qj

does not intersect P . We give a tight estimate on the expected number of isolated

points of such a graph (cf. Theorem 4.1.3), from which we can deduce Theorem 4.1.2.

Finally, we conclude by proving a Ramsey-type result about the random graph of

quadrics (cf. Corollary 4.3.1).

4.1.1 Random hypersurface arrangements

We are given random homogenous polynomials P1, . . . , Ps, where each Pi is ho-

mogenous in n + 1 variables and is of degree di, i.e. P ∈ R[x0, . . . , xn](di), and we

look at the random arrangement of hypersurfaces defined in the projective space by

the zero sets of these polynomials, i.e.,

Γ =
s⋃
j=1

Γj ⊂ RP n,

where each Γj is the real algebraic hypersurface given by the zero set of Pj, i.e.,

Γj = Z(Pj) = {[x0, . . . , xn] ∈ RP n | Pj(x0, . . . , xn) = 0}.

The main problem that we want to address concerns understanding the topological

complexity of Γ, which will be measured by its Betti numbers1.

We observe that there are three sets of parameters that will play a role in our

study: the degree sequence d1, . . . , dn of the hypersurfaces, the dimension n of the

ambient projective space and the number s of independent hypersurfaces. (Of course,

the choice of what is meant by random will also play a role: for us the polynomials

P1, . . . , Ps will be independent samples from the Kostlan ensemble.)

Our first result concerns the asymptotic when n is kept fixed and d1, . . . , ds, s→∞

and gives information on the number of cells of RP n\Γ. There is clearly an analogous

statement for the spherical version of this problem, and the two cases can be related

1For a semialgebraic set S we denote by bi(S) its ith Betti number with coefficients in Z/2Z
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using standard techniques from algebraic topology (the spherical arrangement double

covers the projective one and the asymptotics, up to a factor of two, are the same).

Theorem 4.1.1 (n fixed) Let P1, . . . , Ps ∈ R[x0, . . . , xn] be random, independent,

Kostlan polynomials, where Pi has degree di. Let Γi ⊂ RP n be the zero set of Pi, and

define Γ =
⋃s
i=1 Γi. Also, let d = max (d1, . . . , ds). Then:

E [b0(RP n \ Γ)] =
∑
I⊂[s]
|I|=n

√∏
i∈I

di +O(d
(n−1)/2sn−1). (4.1)

Moreover if all the degrees are the same d1 = · · · = ds = d we have:

E [b0(RP n \ Γ)] =

(
s

n

)
d
n/2 +O(d

(n−1)/2sn−1). (4.2)

Remark 4.1.1 As we will prove in Corollary 4.2.2, the expectation of the total Betti

number of RP n\Γ has the same order as that of the expected number of connected

components (cf. Equation (4.2)). This suggests an interesting phenomenon: the total

amount of topology in RP n\Γ is the same (to the leading order) as the total number

of cells of RP n\Γ and it is therefore natural to conjecture that a random cell is on

average homologically a point — but unfortunately we were not able to prove this

result. It is also interesting to compare the previous statement with its worst possible

deterministic bound from (Basu et al., 1996):

b0(RP n\Γ) ≤
(
s

n

)
(O(d))n .

Remark 4.1.2 It is possible to produce estimates for the expected number of cells

also for other invariant distributions (classified in (Kostlan, 1993)), and the answer

is given in terms of the parameter of the distribution. In general it is no longer true

that we obtain an estimate where the leading term in d is of the type O(dn/2), for
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instance sampling random harmonic polynomials of degree d, we get an estimate of

the type:

E [b0(RP n \ Γ)] = Θ

(
dnsn

n!

)
.

4.1.2 Arrangements of random quadrics

The, next result deals instead with the asymptotic structure of Γ when d1, . . . , ds =

2, n is fixed, and s→∞. It turns out that in this case, the problem of understanding

the number of connected components of Γ, i.e. b0(Γ) (Betti numbers of Γ and RP n\Γ

are related by the Alexander-Pontryiagin duality), is related to the connectivity of a

certain random graph model, and can be studied in a precise way. Specifically, our

second theorem gives an upper bound on the average number of connected components

in a random arrangement of quadrics’ zero sets.

Theorem 4.1.2 (n fixed, s→∞) Let P1, . . . , Ps ∈ R[X0, . . . , Xn] be homogeneous

Kostlan quadrics. Let Γi ⊂ RP n be the zero set of Pi, and define Γ =
⋃s
i=1 Γi. Then

lim
s→∞

E [b0(Γ)]

s
= 0.

Remark 4.1.3 The topology of a random intersection of quadrics has been studied in

(Lerario, 2015; Lerario and Lundberg, 2016), also using a random spectral sequence

(different from the one of this paper). There the following statement is proved: if

X ⊂ RP n is an intersection of k random quadrics, then for every fixed i ≥ 0 with

probability that goes to one faster than any polynomial as n→∞ we have bi(X) = 1.

In fact this phenomenon follows from a sort of “rigidification” of the spectral sequence

structure in the large n limit (a similar phenomenon can be observed in the context

of this paper).

As a corollary of Theorem 4.1.2 (cf. Corollary 4.3.1), we rule out the existence of

linear sized cliques in the complement of the quadrics graph. This must be contrasted
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with a result in (Alon et al., 2005) who prove a Ramsey type result (cf. Theorem

4.3.3) about existence of sub-linear sized cliques in general semi-algebraic graphs.

4.1.3 A random graph model

The result on random arrangements of quadrics unexpectedly follows from the

statistic of the number of connected components of a certain random graph intro-

duced as follows. We pick a semialgebraic convex subset P ⊂ RPN and we sample

independent points q1, . . . , qs from the uniform distribution on RPN . (In the forth-

coming connection with the previous problem, N plays the role of the dimension of

the space of quadratic forms and the points q1, . . . , qs are the quadrics.) The vertices

of the random graph are points {v1, . . . , vs} (one for each sample) and we put an edge

between vi and vj, if and only if i 6= j and the line connecting qi and qj does not

intersect P . We call such a graph a obstacle random graph and denote it by G(P , s).

Of course the same definition makes sense in every compact Riemannian manifold,

where the notion of convexity comes from geodesics. An obstacle random graph is

expected to have at least s · vol(P)
vol(RPN )

many isolated points (this is the expected number

of points falling inside P). In Theorem 4.1.3 below we prove that to the leading order

there are no other isolated points.

Theorem 4.1.3 (P ⊂ RPN fixed, s→∞) The expected number of connected com-

ponent of the obstacle random graph satisfies

lim
s→∞

E [b0(G(N,P , s))]
s

≤ vol (P)

vol (RPN)
.

The connection between Theorem 4.1.3 and Theorem 4.1.2 comes from an in-

teresting result of Calabi (see Theorem 4.3.2 below): the common zero set of two

quadrics in RP n is nonempty if and only if the line joining these two quadrics (the

projective pencil) does not intersect the set P ⊂ RPN of positive quadrics. Since

nonempty quadrics in projective space are connected, the incidence graph of the ran-
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dom arrangement Γ =
⋃s
j=1 Z(qj) is the same as the obstacle random graph minus

its isolated points coming from vertices vi whose corresponding quadric qi ∈ P .

4.2 A Random Spectral Sequence

4.2.1 Preliminaries on spectral sequences

We direct the reader to references such as (McCleary, 2001) for an in-depth treat-

ment of spectral sequences. Our semi-algebraic sets will be assumed to possess finite

triangulations. We shall study the simplicial cohomology (in our case, the topology is

tame, so various cohomology theories coincide). Specifically, our method of proving

involves a Mayer-Vietoris spectral sequence argument over a double complex arising

from the Mayer-Vietoris exact sequence. We shall begin by reviewing what a double

complex of vector spaces is and then introduce the associated spectral sequence.

Double Complexes

A double complex C is a bigraded vector space

C =
⊕
p,q∈Z

Cp,q,

with morphisms (dp,q∧ , d
p,q
> )p,q∈Z, where dp,q∧ : Cp,q → Cp,q+1 are called ‘upward’ mor-

phisms and dp,q> : Cp,q → Cp+1,q are called ‘rightward’ morphisms (we shall omit the

superscripts on the morphisms whenever they are clear from context), satisfying:

(I) d2
∧ = 0, d2

> = 0,

(II) d∧d> + d>d∧ = 0 (i.e. they anticommute).

As can be seen, the superscripts p, q, are in keeping with the convention for how the

(x, y)-plane is labeled; consequently, a double complex is called a first quadrant double

complex if Cp,q = 0 whenever either p < 0 or q < 0.
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...
...

...xd∧ xd∧ xd∧
−→ Cp−1,q+1 d>−→ Cp,q+1 d>−→ Cp+1,q+1 −→xd∧ xd∧ xd∧
−→ Cp−1,q d>−→ Cp,q d>−→ Cp+1,q −→xd∧ xd∧ xd∧
−→ Cp−1,q−1 d>−→ Cp,q−1 d>−→ Cp+1,q−1 −→xd∧ xd∧ xd∧

From the double complex, we can form a co-chain complex of vector spaces C•,

called the associated total complex, defined by Cn =
⊕

p+q=nC
p,q, with D = d∧+d> :

Cn → Cn+1 as the co-boundary operator. Note that D2 = (d∧+d>)2 = d2
∧+ (d∧d> +

d>d∧) + d2
> = 0, verifying that C• is indeed a valid co-chain complex.

There is a natural structure called filtration that we can find in our co-chain

complex C•. In fact, each co-chain group Cn =
⊕

p+q=nC
p,q has two filtrations.

One filtration, called the vertical filtration, is by restricting p to be greater than or

equal to some k. The second filtration, called the horizontal filtration, is obtained by

restricting q to be greater than or equal to k.

The vertical filtration is:

Cn = Cn
0 ⊇ Cn

1 ⊇ . . . ⊇ Cn
n ⊇ Cn

n+1 = 0,

where

Cn
k =

⊕
p+q=n
p≥k

Cp,q.

Also let Zn
k be the co-cycles in Cn

k , i.e.

Zn
k = {z ∈ Cn

k | Dz = 0},
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and

Hn
k = Zn

k

/
(Zn

k ∩Bn) ,

where Bn = DCn−1. Thus we have a corresponding filtration of Hn(C), i.e. . . . ⊇

Hn
k−1 ⊇ Hn

k ⊇ Hn
k+1 ⊆ . . .. Also denote Hk,n−k the quotients H

n
k

/
Hn
k+1

.

Spectral sequence associated to a Double Complex

A spectral sequence is a sequence of complexes (Er, dr)r≥0, where Er+1
∼= Hdr(Er),

and dr are differentials

dr : Ep,q
r → Ep+r,q−r+1

r .

Recall that we have graded co-chain groups Cn =
⊕

p+q=nC
p,q. We say that an

element of C•,• is a (p, q)-strip if it is an element of ⊕l≥0C
p+1,q−l. Let Zp,q be the set

of all (p, q)-strips that are co-cycles. We get the following characterization for Zp,q.

Let a ∈ Cp,q, a(i) ∈ Cp+i,q−i, for i ≥ 1; thus a⊕ a(1) ⊕ a(2) ⊕ . . . is a (p, q)-strip. Since

it is a co-cycle, by definition, D(a⊕a(1)⊕a(2)⊕ . . .) = 0 = η (say). η has co-ordinates

in all Cp+l,q+1−l, l ≥ 0. The co-ordinate in Cp,q+1 is d∧a, the co-ordinate in Cp+1,q is

d>a+d∧a
(1), the co-ordinate in Cp+2,q−1 is d>a

(1) +d∧a
(2), and so on. All co-ordinates

must be 0, thus we can conclude that Zp,q denotes the set of all a ∈ Cp,q such that

the following system of equations has a solution:

d∧a = 0,

d>a = −d∧a(1),

d>a
(1) = −d∧a(2),

d>a
(2) = −d∧a(3), (4.3)

...
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Also, we define Bp,q ⊆ Cp,q to be all elements b such that it has a pre-image in Cp+q−1.

Using the same analysis as above, we get the characterization that Bp,q is all b such

that the following system of equations has a solution:

d∧b
(0) + d>b

(−1) = 0,

d∧b
(−1) + d>b

(−2) = 0,

d∧b
(−2) + d>b

(−3) = 0, (4.4)

...,

where b(−i) ∈ Cp−i,q+i−1. Recall thatHp,q was defined to be the quotientsH
p+q
p

/
Hp+q
p+1

.

It is easy to see that

Hp,q ∼= Zp,q
/Bp,q .

Now, define

Zp,q
r = {a ∈ Cp,q | ∃ (a(1), . . . , a(r−1)) with (a, a(1), . . . , a(r−1)) satisfying (4.3)},

and

Bp,q
r = {b ∈ Cp,q | ∃ (b(0), b(−1), . . .) with (b, b(0), b(−1), . . .) satisfying (4.4),

and b(−r) = b(−r−1) = . . . = 0}.

Thus we observe that we have the following subspace structure of the vector space

Cp,q:

Bp,q
1 ⊆ Bp,q

2 ⊆ . . . ⊆ Bp,q ⊆ Zp,q ⊆ Zp,q
1 ⊆ . . . ⊆ Cp,q.

Define the (p, q)-th graded piece, i.e. Ep,q
r , of the rth page, i.e. Er, as Ep,q

r =

Zp,q
r

/
Bp,q
r

. It should be seen as an approximation to Hp,q = Zp,q
/Bp,q .
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We shall now define the differentials dr. Let [a] ∈ Ep,q
r for some a ∈ Zp,q

r . Then

there exists a(1), . . . , a(r−1) satisfying (4.3). Now, dr is defined as follows

dr : Ep,q
r → Ep+r,q−r+1

r , taking [a] 7→ [d>a
(r−1)] ∈ Ep+r,q−r+1

r .

We refer the reader to (McCleary, 2001) for a proof that this map is well-defined.

Mayer-Vietoris Spectral Sequence

Of interest to us is a particular double complex that arises from the Mayer-Vietoris

exact sequence. Let A1, . . . , As be sub-complexes of a finite simplicial complex A =

A1 ∪ . . . ∪As. By the definition of a simplicial complex, any finite intersection Aα0 ∩

. . .∩Aαp , denoted Aα0,...,αp is a sub-complex of A. Let Ci(A) denote the vector space

over R of i-co-chains of A, and C∗(A) =
⊕

iC
i(A). A basic definition from simplicial

homology is that of the singular co-boundary homomorphism d : Cq(A)→ Cq+1(A),

i.e.

(dω)([a0, . . . , aq+1]) =
∑

0≤i≤q+1

ω([a0, . . . , âi, . . . , aq+1]),

extended linearly, where w ∈ Cq(A), [a0, . . . , aq+1] is a q+1 simplex in A, andˆdenotes

omission of a vertex.

The Mayer-Vietoris sequence is an exact sequence of vector spaces, where each

vector space is of the form
⊕

α0<...<αp
C∗(Aα0,...,αp). Specifically, it is the following

sequence:

0 −→ C∗(A)
r−→
⊕
α0

C∗(Aα0)
δ−→
⊕
α0<α1

C∗(Aα0,α1) . . .

δ−→
⊕

α0<α1<...<αp

C∗(Aα0,α1,...,αp)
δ−→ . . . . (4.5)

Here r is just induced by restriction. We need to define δ, which is called the Čech dif-

ferential. Let ω ∈
⊕

α0<...<αp
Cq(Aα0,...,αp). Then, δ(ω) ∈

⊕
α0<...<αp+1

Cq(Aα0,...,αp+1).
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Each element of
⊕

α0<...<αp+1
Cq(Aα0,...,αp+1) is a tuple of size

(
s

p+2

)
, where each item

in the tuple is a linear form on Cq(Aα0,...,αp+1), for a specific (p + 2)-tuple 0 ≤ α0 <

. . . < αp+1 ≤ s. Thus, we can index δ(ω) by (p + 2)-tuples, and consequently, it

suffices to define δ(ω)α0,...,αp+1 . Let s ∈ Aα0,...,αp+1 be a q-simplex. δ(ω)α0,...,αp+1 is a

linear form on Cq(Aα0,...,αp+1), defined as

δ(ω)α0,...,αp+1(s) =
∑

0≤i≤p+1

(−1)iωα0,...,α̂i,...,αp+1(s).

It is known that the sequence (4.5) is exact. We now initialize the zeroth page of

our spectral sequence, i.e. the double complex

E0 =
⊕
p,q≥0

Ep,q
0 , where Ep,q

0 =
⊕

α0<...<αp

Cq(Aα0,...,αp),

and the total differential D = δ + (−1)pd (verify that D2 = 0). Thus we get that E0

has the following shape:

...
...

...xd xd xd
0 −→

⊕
α0
C3(Aα0)

δ−→
⊕

α0<α1
C3(Aα0,α1)

δ−→
⊕

α0<α1<α2
C3(Aα0,α1,α2) −→xd xd xd

0 −→
⊕

α0
C2(Aα0)

δ−→
⊕

α0<α1
C2(Aα0,α1)

δ−→
⊕

α0<α1<α2
C2(Aα0,α1,α2) −→xd xd xd

0 −→
⊕

α0
C1(Aα0)

δ−→
⊕

α0<α1
C1(Aα0,α1)

δ−→
⊕

α0<α1<α2
C1(Aα0,α1,α2) −→xd xd xd

0 −→
⊕

α0
C0(Aα0)

δ−→
⊕

α0<α1
C0(Aα0,α1)

δ−→
⊕

α0<α1<α2
C0(Aα0,α1,α2) −→xd xd xd

0 0 0

There are two spectral sequences associated with Ep,q
0 both converging to H∗D(E0),

one corresponding to taking the horizontal filtration, and another corresponding to
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taking the vertical filtration. The first two terms by taking the horizontal filtration are

E1 = Hδ(E0) and E2 = Hd(Hδ(E0)). Because of the exactness of the Mayer-Vietoris

sequence (c.f. (4.5)), we have

E1 =

...
...

...xd x0
x0

C3(A) 0 0xd x0
x0

C2(A) 0 0xd x0
x0

C1(A) 0 0xd x0
x0

C0(A) 0 0

,

and consequently,

E2 =

...
...

...

H3(A) 0 0

H2(A) 0 0

H1(A) 0 0

H0(A) 0 0

.
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The sequence converges at E2, showing that H∗D(E0) ∼= H∗(A). The first two terms

by taking the vertical filtration are E ′1 = Hd(E0) and E ′2 = Hδ(Hd(E0)). Specifically,

E ′1 =

...
...

...

⊕
α0
H3(Aα0)

δ−→
⊕

α0<α1
H3(Aα0,α1)

δ−→
⊕

α0<α1<α2
H3(Aα0,α1,α2) −→

⊕
α0
H2(Aα0)

δ−→
⊕

α0<α1
H2(Aα0,α1)

δ−→
⊕

α0<α1<α2
H2(Aα0,α1,α2) −→

⊕
α0
H1(Aα0)

δ−→
⊕

α0<α1
H1(Aα0,α1)

δ−→
⊕

α0<α1<α2
H1(Aα0,α1,α2) −→

⊕
α0
H0(Aα0)

δ−→
⊕

α0<α1
H0(Aα0,α1)

δ−→
⊕

α0<α1<α2
H0(Aα0,α1,α2) −→

.

Now, since this spectral sequence also converges to H∗(A), we have that

rank H i(A) =
∑
p+q=i

rank E ′
p,q
∞ ≤

∑
p+q=i

rank E ′
p,q
1 .

4.2.2 Random Mayer-Vietoris Spectral Sequence

We have a finite family of closed semi-algebraic sets and we want to consider the

cohomology of the union. Let A1, . . . , As be triangulations of Γ1, . . . ,Γs, respectively.

Thus we have a finite simplicial complex A = A1 ∪ . . . ∪As. By definition, any finite

intersection Aα0∩. . .∩Aαp , denoted Aα0,...,αp , is a sub-complex of A. Let Ci(A) denote

the vector space over R of i-co-chains of A, and C∗(A) =
⊕

iC
i(A). We shall use the

Mayer-Vietoris spectral sequence. From the above, we have the following theorem.

Theorem 4.2.1 (Mayer-Vietoris spectral sequence (see e.g. (Basu, 2003)))

There exists a first quadrant cohomological spectral sequence (Er, δr)r∈Z, where each

Er is a double complex

Er =
⊕
p,q∈Z

Ep,q
r ,
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and

Ep,q
0 =

⊕
α0<...<αp

Cq(Aα0,...,αp),

with morphisms

δr : Ep,q
r → Ep+r,q−r+1

r ,

where

Er+1
∼= Hδr(Er).

This spectral sequence converges to the cohomology of the union, i.e.

Ep,q
r ⇒ Hp+q(A),

and consequently

rank H i(A) =
∑
p+q=i

rank E ′
p,q
∞ . (4.6)

Also, this spectral sequence collapses at En, i.e.

En−1,0
∞

∼= En−1,0
n .

Corollary 4.2.1 (of Theorem 4.2.1) Let A1, . . . , As be random simplicial complexes.

Consider the same definitions as in Theorem 4.2.1. For every r ≥ 0, define ea,br :=

E
[
rank Ea,b

r

]
. We have

ep,qr+1 ≤ ep,qr , (4.7)

and, when Ep+r,q−r+1
r = 0,

ep,qr+1 ≥ ep,qr − ep−r,q+r−1
r . (4.8)
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Proof Follows immediately from the deterministic versions of the same statements,

which in turn follow from the structure of the differentials, i.e., specifically the fact

that

Ep,q
r+1
∼= Ker (δr : Ep,q

r → Ep+r,q−r+1
r )

/
Im (δr : Ep−r,q+r−1

r → Ep,q
r ) .

4.2.3 Average Betti numbers of hypersurface arrangements

Proof [Proof of Theorem 4.1.1] We give the proof for the spherical case; the asymp-

totic for projective case needs to be divided by two. By Theorem 4.2.1,

Ep,q
1
∼=

⊕
α0<...<αp

Hq(Aα0,...,αp).

In our case, we have random complexes Aα0,...,αp , and we need two results. First is

the result by (Edelman and Kostlan, 1995; Kostlan, 1993; Shub and Smale, 1993b),

which gives the precise value of the expected rank of
⊕

α0<...<αn−1
H0(Aα0,...,αn−1):

en−1,0
1 = 2

∑
I⊂[s]
|I|=n

√∏
i∈I

di. (4.9)

Next, we need a bound that follows immediately from (Gayet and Welschinger,

2015). They prove that that for a smooth real projective manifold X, E [bi(X)] ≤

O
(√

ddim(X)
)

. Noting that there are a total of
(
s

p+1

)
such manifolds, we have:

ep,q1 ≤
(

s

p+ 1

)
O(d

(n−p−1)/2), (4.10)

for any p < n− 1.
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Denoting the reduced Betti numbers of a manifold by b̃∗(·), by the Alexander-

Pontryiagin duality, we have

bn−1(Γ) = b̃n−1(Γ) = b̃0(Sn \ Γ) = b0(Sn \ Γ)− 1,

thus

E [b0(Sn \ Γ)]

= E [bn−1(Γ)] + 1 (Alexander-Pontryiagin duality)

=
n∑
k=1

en−k,k−1
∞ + 1 (by (4.6) and linearity of expectation).(4.11)

First, observe that

n∑
k=2

en−k,k−1
∞ ≤

n∑
k=2

en−k,k−1
1 (by (4.7))

≤
n∑
k=2

(
s

n− k + 1

)
O(d

(k−1)/2) (by (4.10))

≤ sn−1O(d
(n−1)/2). (4.12)

Now it remains to give precise bounds on en−1,0
∞ , which is the same as as obtaining

precise bounds on en−1,0
n , given that the spectral sequence collapses at En (cf. Theorem

4.2.1). Clearly,

en−1,0
∞ = en−1,0

n ≤ en−1,0
1 = 2

∑
I⊂[s]
|I|=n

√∏
i∈I

di.

For the lower bound, we make repeated use of Equation (4.8). Note that (4.8) is

true only when Ep+r,q−r+1
r = 0, which happens when r > q + 1 since we have a first-
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quadrant spectral sequence. Thus (4.8) holds for all ep,0r when r > 1. Telescoping, we

get

en−1,0
∞ = en−1,0

n

≥ en−1,0
n−1 − e

0,n−2
n−1 (by (4.8))

≥ en−1,0
n−1 − e

0,n−2
1 (by (4.7))

≥ en−1,0
n−2 − e

1,n−3
n−2 − e

0,n−2
1 (by (4.8))

≥ en−1,0
n−2 − e

1,n−3
1 − e0,n−2

1 (by (4.7))

...

≥ en−1,0
1 −

(
n−2∑
i=0

ei,n−2−i
1

)

≥ 2
∑
I⊂[s]
|I|=n

√∏
i∈I

di −

(
n−2∑
i=0

(
s

i+ 1

)
O
(
d

(n−i−1)/2
))

(by (4.9), (4.10)).

Thus,

2
∑
I⊂[s]
|I|=n

√∏
i∈I

di ≥ en−1,0
∞ ≥ 2

∑
I⊂[s]
|I|=n

√∏
i∈I

di − sn−1O
(
d

(n−1)/2
)
. (4.13)

Putting Equations (4.13) and (4.12) in Equation (4.11) completes the proof of the

theorem.

Below we give a corollary of Theorem 4.1.1 which gives a bound on the sum of

the Betti numbers of RP n \ Γ (we prove the corollary for the spherical case, again

one has to divide the asymptotics by two in the projective case).

Corollary 4.2.2 (n fixed) Let Γ be defined as in Theorem 4.1.1. Then, for all

k > 0,

E [bk(S
n \ Γ)] = O(d

(n−1)/2sn−k). (4.14)
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Consequently,

E

[
n−1∑
i=0

bi(S
n \ Γ)

]
= 2

∑
I⊂[s]
|I|=n

√∏
i∈I

di +O(d
(n−1)/2sn−1). (4.15)

Proof By Alexander-Pontryiagin duality, when k > 0,

bk(S
n \ Γ) = b̃k(S

n \ Γ) = b̃n−k−1(Γ) ≤ bn−k−1(Γ),

thus

E [bk(S
n \ Γ)] ≤ E [bn−k−1(Γ)]

=
n−k−1∑
i=0

ei,n−k−i−1
∞

≤
n−k−1∑
i=0

ei,n−k−i−1
1

≤
n−k−1∑
i=0

(
s

i+ 1

)
O
(
d

(n−i−1)/2
)

(by (4.10))

≤ sn−kO
(
d

(n−1)/2
)
,

proving Equation (4.14). Using this, Equation (4.1) of Theorem 4.1.1, and linearity

of expectation, Equation (4.15) follows immediately.

Thus the expected total Betti number of RP n\Γ has the same order as that of its

number of connected components.

4.3 Obstacle Random Graphs and an Application to Arrangement of Quadrics

In this section, we study the top Betti number of RP n \Γ, when Γ is the union of

a finite set of quadrics. It turns out that in this case, the problem of understanding

the number of connected components of Γ is related to the connectivity of a certain

random graph model.
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In the study of the topological complexity of arrangements of hypersurfaces, there

are two sets of parameters that play a part. First is the sequence of degrees of

the polynomials defining the hypersurfaces. Second is the number of polynomials

in the arrangement. The former is often called the ‘algebraic part’ and the latter

is called the ‘combinatorial part’. While the algebraic part is indeed important, in

several applications, for instance in discrete and computational geometry, it is the

combinatorial part of the complexity that is of paramount interest. This is because

one typically encounters arrangements of a large number of objects, where each object

has “bounded complexity”.

Theorem 4.1.1 and Corollary 4.2.2 together suggest that in arrangements of s

random hypersurfaces, the top Betti number of the complement of the union of the

arrangement grows linearly in s. In line with many results where the growth of the

Betti numbers of semi-algebraic sets defined by quadratic inequalities is shown to be

different, in this section we prove a bound on the average top Betti number of the

complement of the union of an arrangement of Kostlan quadrics that is sub-linear in

s. In Section 4.3.1, we introduce our random graph model which we call “Obstacle”

random graphs. In Section 4.3.2, we prove a theorem (Theorem 4.3.1) about the

average number of connected components in this random graph model. Then, in

Section 4.3.3, using a theorem of Calabi (Theorem 4.3.2), we obtain a result on the

average zeroth Betti number of Γ (Theorem 4.1.2), when Γ is a finite union of the

zero sets of quadrics.

4.3.1 The ‘Obstacle’ random graph model

In this section we introduce the obstacle random graph model.

Definition 4.3.1 (‘Obstacle’ random graph) Let {q1, . . . , qs} ⊂ RPN be a sam-

ple from the uniform distribution on RPN , and let P ⊂ RPN (the “obstacle”) be

a measurable convex set. We define the obstacle random graph model G(N,P , s) as

follows:
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1. G(N,P , s) has s vertices {q1, . . . , qs}.

2. Define `(qi, qj) := {[λaqi + λbqj]}[λa,λb]∈RP 1. The edge set is defined as the set of

unordered pairs

{(qi, qj) | 1 ≤ i < j ≤ s and `(qi, qj) ∩ P = ∅} .

In other words, it is an undirected graph where the vertices are {q1, . . . , qs}, and for

every pair of distinct vertices qi, qj has an undirected edge if and only if the great

circle connecting the vertices does not intersect P.

This model bears some similarity to random visibility graphs (De Berg et al.,

2000). See Figure 4.2 for an example illustration.

RPN

P

Figure 4.2.: Illustration of obstacle random graph. The thick lines denote edges of
the graph, while the dotted lines denote non-edges, i.e. edges that were not included
in the random graph because their geodesic completion intersected P .

Remark 4.3.1 Two commonly studied random graph models are the Erdös-Rényi

model (proposed in (Erdös and Rényi, 1959; Gilbert, 1959)), and the geometric ran-

dom graph model (proposed in (Gilbert, 1961)).
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• In the obstacle random graph, the edge probabilities are random variables, and

the random variables are not independent. Thus this model is dissimilar to the

Erdös-Rényi model.

• Define the metric d : RPN × RPN → R, where

d(q, q′) =


0 q1 = q2

1 `(q1, q2) ∩ P 6= ∅

1
2

otherwise

.

While our graph is a geometric random graph on s vertices with an edge ap-

pearing between two distinct vertices q1, q2 when d(q1, q2) ≤ 1
2
, note that d is a

non-continuous function that is difficult to work with, and thus standard results

in the geometric random graph literature do not apply.

4.3.2 Average number of connected components of obstacle random graphs

We shall now study the average number of connected components in the obstacle

random graph model G(N,P , s) as s → ∞. Specifically, we prove the following

theorem.

Theorem 4.3.1 (N fixed, s→∞) Consider G(N,P , s), the obstacle random graph

model as per Definition 4.3.1. Then

lim
s→∞

E [b0(G(N,P , s))]
s

≤ vol (P)

vol (RPN)
.

Below is a synopsis of the proof of Theorem 4.3.1.

1. A simple first step is Proposition 4.3.1 where we understand the distribution

of the number of vertices in various regions in RPN . Specifically, Proposition

4.3.1 gives tail bounds on the number of vertices in P , P(ε) \ P (where P(ε) is

the ε-neighbourhood of P) and RPN \ P(ε).
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2. The second and final (and most involved) step is the proof of Lemma 4.3.1 which

proves that the subgraph of G(N,P , s) restricted to RPN \ P(ε) has number

of connected components constant w.r.t. s. The proof of Lemma 4.3.1 involves

the following sub-steps.

(a) Cover RPN \ P(ε) with balls of radius r > 0, r to be chosen later.

(b) We define the good cone of a point p w.r.t. P as the set of all points in

RPN \ P such that an edge would appear between the point and p. Then

for each r-ball B, we proceed to lower bound the probability (Lemma

4.3.2) of choosing a point in RPN \ P(ε) such that the good cone of the

point contains B. This involves showing that the volume of the good cone

(also to be defined later) of a point is a continuous function of the position

of the point. We prove this by first considering a smooth approximation

of P containing P and contained in P(ε) (Proposition 4.3.3), and then

applying a stereographic projection and proving continuity in Euclidean

space (Lemma 4.3.3).

(c) Finally, a geometric coupon-collector type argument (Lemma 4.3.4) gives

tail bounds on the number of points required for all r-balls to be contained

in good cones. This ensures that any new point sampled in RPN \ P(ε)

will not add a new connected component to the graph.

Sample s points q1, . . . , qs i.i.d. from the uniform distribution on RPN . Let P(ε)

be the ε-neighbourhood of P in RPN . Define the random variables

se(ε) =
s∑
i=1

1
{
qi ∈ RPN \ P(ε)

}
,

which is the number of points in RPN \ P(ε),

sa(ε) =
s∑
i=1

1 {qi ∈ P(ε) \ P} ,
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which is the number of points in P(ε) \ P , and

sp =
s∑
i=1

1 {qi ∈ P} ,

which is the number of points in P . Obviously,

s = se(ε) + sa(ε) + sp.

Now, let Ω1(ε),Ω2(ε),Ω3 be the following defined events:

Ω1(ε) =

{
se(ε) = s ·

(
1− vol (P(ε))

vol (RPN)

)
± o(
√
s)

}
,

Ω2(ε) =

{
sa(ε) = s ·

(
vol (P(ε) \ P)

vol (RPN)

)
± o(
√
s)

}
,

Ω3 =

{
sp = s ·

(
vol (P)

vol (RPN)

)
± o(
√
s)

}
.

Below we have a simple proposition that gives tail bounds on the random variables

se(ε), sa(ε) and sp.

Proposition 4.3.1 For all 0 < δ < 1, ε > 0, α > 0, there exists s̃1 = s̃1(δ, α) =(
2

log 6/δ

)2α

, such that if s > s̃1,

P [Ω1(ε)c] ,P [Ω2(ε)c] ,P [Ωc
3] <

δ

3
,

and consequently, for all ε > 0,

P [Ω1(ε) ∩ Ω2(ε) ∩ Ω3] > 1− δ.

This also implies that for all ε > 0,

lim
s→∞

P [Ω1(ε) ∩ Ω2(ε) ∩ Ω3] = 1.
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We will need the additive Chernoff-Hoeffding bound for Binomial random vari-

ables.

Proposition 4.3.2 (See for e.g. (Boucheron et al., 2013)) For a random vari-

able X ∼ Binomial(n, p),

P [X < E [X]− t] ,P [X > E [X] + t] < e
−2t2/n.

Consequently, if n ≥ ñ = ñ(t, δ) = 2t2

log 2/δ
,

P [|X − E [X]| > t] < δ.

Proof [Proof of Proposition 4.3.1] Obviously se(ε), sa(ε) and sp are Binomial ran-

dom variables. Note that

E [se(ε)] = s ·
(

1− vol (P(ε))

vol (RPN)

)
.

By Proposition 4.3.2, we have that

P [Ω1(ε)c] ≤ P
[∣∣∣∣se(ε)− s · (1− vol (P(ε))

vol (RPN)

)∣∣∣∣ > s
1/2−α

]
<
δ

3
. (4.16)

Similarly, by noting that

E [sa(ε)] = s ·
(

vol (P(ε) \ P)

vol (RPN)

)
,

and

E [sp] = s ·
(

vol (P)

vol (RPN)

)
,

again by Proposition 4.3.2, we have that

P [Ω2(ε)c] ≤ P
[∣∣∣∣sa(ε)− s · (vol (P(ε) \ P)

vol (RPN)

)∣∣∣∣ > s
1/2−α

]
<
δ

3
, (4.17)
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and

P [Ωc
3] ≤ P

[∣∣∣∣sp − s · ( vol (P)

vol (RPN)

)∣∣∣∣ > s
1/2−α

]
<
δ

3
. (4.18)

The first part of the claim follows by (4.16), (4.17), and (4.18), and the second part

follows by applying a union bound on the equations.

Recall that G(N,P , s) is the graph over all the s points q1, . . . , qs. Let G1(N,P , s, ε)

denote the subgraph of G(N,P , s) restricted to the vertices in RPN \ P(ε), let

G2(N,P , s, ε) denote the subgraph of G(N,P , s) restricted to the vertices in P(ε)\P ,

and let G3(N,P , s) denote the subgraph of G(N,P , s) restricted to the vertices in P .

Note that G3(N,P , s) contains sp vertices and no edges whatsoever. The following

lemma gives us some information of the distribution of the zeroth Betti number of

G1(N,P , s, ε).

Lemma 4.3.1 For all ε > 0, δ1 > 0, there exists s̃2 = s̃2(ε, δ1, N), a = a(ε,N), such

that for all s > s̃2

P
[
b0(G1(N,P , s, ε)) ≤ s̃2

a

∣∣∣∣Ω1(ε)

]
≥ 1− δ1.

For any point q ∈ RPN , define

gq(F) =
{
x ∈ RPN | `(q, x) ∩ F = ∅

}
.

By definition, gq(P) is a random variable that denotes the set of points in RPN which,

if sampled, would be connected to q by an edge in G(N,P , s). We will refer to gq(F)

as the good cone of q w.r.t. F , or just good cone if F is clear from context (see

Figure 4.3 for an example illustration of the good cone). The following lemma gives

a lower bound on the relative volume of gq(P), when q is outside P(ε).

Lemma 4.3.2 For B ⊆ RPN , ε > 0, define

GB(F) = {x ∈ RPN \ P(ε) | gx(F) ⊇ B ∩
(
RPN \ P(ε)

)
}.
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P

gq(P)

gq(P)

RPN

q

Figure 4.3.: Illustration of gq(P), the good cone of a point q w.r.t. P . The dashed
lines are geodesics which are tangent to P and incident on q. The shaded region is
gq(P). Recall that in G(N,P , s), by definition, if q is sampled and any point in gq(P)
is sampled, these points would be connected to each other by any edge.

For all ε > 0, there exists r = r(ε,N) > 0, δ2 = δ2(ε,N), such that for any p ∈

RPN \ P(ε),
vol
(
GB(p,r)(P)

)
vol (RPN)

≥ δ2.

Define

αr : RPN \ int(P(ε))→ [0,∞), which takes p 7→
vol
(
GB(p,r)(P)

)
vol (RPN)

.

where r ≤ ε/8 is going to be chosen later. Note that since we are going to be choosing

r ≤ ε/8,

B(p, r) ⊆ RPN \ P(ε/2), ∀p ∈ RPN \ P(ε).

Remark 4.3.2 Observe that the convex set P ⊂ RPN is contained in one single

affine chart, and therefore if we denote by f : SN → RPN the double cover map, the
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preimage f−1(Pn) (which for simplicity we still denote by P) is entirely contained in

a open hemisphere, which we assume it is

U = intB
(
e0,

π

2

)
⊂ SN

for some point e0 ∈ SN . Let us denote now by

σ : U → RN

the stereographic projection constructed as follows: we identify Rn with Te0S
N and

for every point y ∈ U we take σ(y) to be the point of intersection between Te0S
N

and the line from the origin to y. This stereographic projection has an interesting

property that we will use: it maps (unparametrized) geodesics entirely contained in

U , i.e. intersections between U and great circles, to (unparametrized) geodesics in

RN , i.e. straight segments. In particular σ maps convex sets to convex sets, and the

same is true for its inverse. In particular we can use results from convex geometry in

RN to obtain results for the convex geometry of U . Since f |U : U → RP n is a local

isometry onto its image, the same is true for the geometry of convex sets in RPN .

The next proposition is an application of the idea explained in Remark 4.3.2.

Proposition 4.3.3 For all ε > 0, there exists a smooth convex set P̃(ε) such that

P ⊆ P̃(ε) ⊆ P(ε).

Proof Consider the ε/2-neighbourhood of P , i.e. P(ε/2). Since the set of smooth

convex bodies is dense in the Hausdorff distance induced topology on the space of

convex bodies (see (Schneider, 2014, Theorem 2.7.1.)), there exists a body Cε that is

convex, smooth and also satisfies

dH(Cε,P(ε/2)) ≤ ε/3, (4.19)
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where dH denotes Hausdorff distance with the underlying metric being the usual

round metric on SN . We shall now show that Cε itself is the smooth approximation

we desire, i.e. P̃(ε). We know that dH(P ,P(ε/2)) = ε/2. Observe that if P was not

completely contained in Cε, then dH(P(ε/2), Cε) ≥ ε/2, which contradicts Equation

(4.19). Similarly, it can be shown that Cε is completely contained in P(ε) because

otherwise, we would again have dH(P(ε/2), Cε) ≥ ε/2 (because dH(P(ε/2),P(ε)) = ε/2)

contradicting Equation (4.19).

The following lemma proves that for every r′-ball (where r′ > 0 is appropriately

chosen) contained in RPN \P(ε), there is a set of positive measure such that the good

cone of any point in this set contains the ball, which in turn implies that with each

vertex sampled, there is a positive probability that a particular r′ ball is covered.

Lemma 4.3.3 For all ε > 0, there exists r′ = r′(ε,N), δ′2 = δ′2(ε,N) > 0 such that

for any p ∈ RPN \ P(ε),

vol
(
σ
(
GB(p,r′)(P)

))
vol (σ (SN))

≥ δ′2.

Proof Let Qn(ε) = σ(P(ε)) ⊆ RN , and Q̃(ε) = σ(P̃(ε)) (cf. Proposition 4.3.3).

Note that for any p ∈ RPN , gp(P) ⊇ gp(P̃(ε)), and for any B ⊆ RPN , GB(P) ⊇

GB(P̃(ε)) (see Figure 4.4 for an illustration).

Define the map

α̃s : SN−1 \ int(Q(ε))→ [0,∞), which takes q 7→
vol
(
σ
(
GB(σ−1(q),s)(P̃(ε))

))
vol (SN−1)

.

To establish the lemma, we need to show that for an appropriately chosen r, α̃r

attains a minimum on its domain. As a first step, we shall show that the map

α̃0 : SN−1 \ int(Q(ε))→ [0,∞), which takes q 7→
vol
(
σ
(
gσ−1(q)(P̃(ε))

))
vol (SN−1)

,

is bounded below by a continuous function.
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gq(P̃(ε))
gq(P̃(ε))

P

P̃(ε)

RPN

q

Figure 4.4.: Illustration of the good cone of q w.r.t. P̃(ε). P̃(ε) is an approximation
of P which is convex and has a smooth boundary, such that P ⊆ P̃(ε) ⊆ P(ε).
The dashed lines are geodesics which are tangent to P and incident on q, and the
dotted lines are geodesics which are tangent to P̃(ε) and incident on q. Observe that

gq(P̃(ε)) ⊆ gq(P), and consequently, vol
(
gq(P̃(ε))

)
≤ vol (gq(P)).

Q̃n(ε)

Tq′(∂Q̃n(ε))

SN−1

qq′

Π(Q̃n(ε))

β(q)
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Let q′ be the point shortest to q on ∂Q̃n(ε), the boundary of Q̃n(ε). Let Π(Q̃n(ε))

be the projection of Q̃n(ε) onto Tq′(∂Q̃n(ε)), the tangent space of Q̃n(ε) at q′. Observe

that

λ(q) = max
v∈Π(Q̃n)(ε)

‖v‖2

is continuous. Consequently, observe that

vol
(
σ
(
gσ−1(q)(P̃n(ε))

))
vol (SN−1)

≥ 1−
vol
(

spherical cap with angle tan−1
(

λ(q)
2‖q−q′‖2

))
vol (SN−1)︸ ︷︷ ︸

β(q)

.

β(q) is a continuous function, and thus attains a maximum on SN−1 \ int(Qn(ε))

(remember that ‖q − q′‖2 can never become 0 because q is always outside P(ε))

proving that α̃0 is bounded below by a continuous function that attains a minimum

on its domain.

From this, we have that for every p ∈ RPN \ P(ε), we can find a direction ~v′

in RN and an angle θ such that for all directions ~v with cos−1 ~v·~v′
‖~v‖2‖~v′‖2 ≤ θ, we

have that `σ(p,~v) ⊆ σ
(
gp(P̃(ε))

)
, where `σ(p,~v) denotes the line in RN through

σ(p) in the direction ~v. Note that ~v′ and θ depend on p continuously. Let pv′ be

the point of intersection of the line `σ(p,~v′) and SN−1, and now let p2 be the mid-

point on the line joining p and pv′ . Since θ depends on p continuously, it has a

minimum on RPN \ int(P(ε)), and thus we can pick r′′ = r′′(ε,N) > 0 such that

B(p2, r
′′) ⊆ σ

(
gp(P̃(ε))

)
.

Now, for the sake of contradiction, assume that for all r′ > 0,

min
q∈SN−1\int(Qn(ε))

α̃r
′
(q) = 0,

and let q be the point at which α̃r
′

attains the minimum. Then we can find a

sequence (rn), with rn → 0, and a sequence (qn), with qn → q, where qn ∈ B(p, rn),

such that for all n < ∞, there exists a point bn ∈ B(p2, r
′′) with bn 6∈ gqn . Since

SN−1 \ int(Q(ε)) is compact, and B(p2, r
′′) is obviously compact as well, this means
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that (limn→∞ bn) 6∈ (limn→∞ gqn), implying that there is a point in B(p2, r
′′) which

does not belong to gq, which gives us the contradiction we require.

Proof [Proof of Lemma 4.3.2] Set r = min(r′, ε/8). The proof of the lemma follows

by noting that since σ is smooth, bijective and angle-preserving (conformal)2, proving

that there is a set of strictly positive measure that is good for all r-balls centered in

RPN \ P(ε) follows from Lemma 4.3.3. This is because since δ′2 > 0, the pre-image

under σ of any set of measure at least δ′2 will be strictly positive (δ2 will be the measure

of the pre-image, under σ, of the set in RN which attains the minimum measure δ′2).

The lemma below gives bounds on the number of samples from RPN\P(ε) required

to cover all of RPN \ P(ε) with good cones.

SN

Pn

Pn(ε)

B1 B2 B3 B4 . . .

Figure 4.5.: Illustration of the proof of Lemma 4.3.1 in a nutshell – cover the comple-
ment of the fattening of P(ε) with balls, show that each ball has positive probability
of being covered, and then finish with a coupon-collector type argument.

2Note that the stereographic projection is not isometric, and thus does not preserve areas. However,
angle-preservation is enough for us.



77

Lemma 4.3.4 For any ε > 0, define C = C(ε) to be a random variable that denotes

that number of points q′1, . . . , q
′
C needed outside RPN \ P(ε) s.t.

C⋃
i=1

gq′i(Pn) ⊇ RPN \ P(ε).

Then, for all δ3 > 0, there exists α = α(ε, δ3, N) such that

P [C ≤ α] ≥ 1− δ3.

Proof Take a covering of RPN \ P(ε) with r-balls (where r is from Lemma 4.3.2)

of size Q = Q(ε,N), and let the Q balls that cover RPN \ P(ε) be B1, . . . , BQ.

Remember that the conditional distribution of sampling from RPN \P(ε) is uniform.

Let Ci denote the additional number of points needed to be sampled from RPN \P(ε)

such that Bi is covered, given that balls B1, . . . Bi−1 are already covered by
⋃Ci−1

i=1 gq′i .

By definition,

C ≤
Q∑
i=1

Ci.

When balls B1, . . . Bi−1 are already covered, Bi could already be covered. Let the

probability that Bi is already covered be pi. If not covered, by Lemma 4.3.2, each Ci

is a geometric random variable with parameter µi ≥ δ2. This means

Ci =

0 with prob. pi

Geom(µi) with prob. 1− pi
.

Thus

E [Ci] = 0 · pi + (1− pi) ·
1

µi
≤ 1

µi
≤ 1

δ2

,

and by linearity of expectation, in turn, we get that

E [C] ≤ Q

δ2

. (4.20)
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Set α = Q
δ2δ3

. Applying Markov’s inequality on C, and using Equation (4.20), the

lemma follows.

Remark 4.3.3 The proof of Lemma 4.3.4 is similar to the coupon collector problem

(see for e.g. (Isaac, 1995) for a desription). The balls represent coupons. When

the good cone of a sampled point encapsulates a ball, this is equivalent to collecting a

coupon. See Figure 4.5 for an illustration.

Proof [of Lemma 4.3.1] The above lemma shows that we will have a covering of

RPN \ P(ε) with good sets, with probability at least 1− δ3, if we have se(ε) ≥ α. To

complete the proof of Lemma 4.3.1, we have to set s̃2 appropriately so that if s ≥ s̃2,

then se(ε) ≥ α. Conditioning on Ω1(ε), it is clear that if s ≥ k ·α
(

vol(RPN)
vol(RPN )−vol(P(ε))

)
,

for an appropriately chosen constant k, then se(ε) ≥ α. Thus, conditioned on Ω1(ε),

setting s̃2 = k · α
(

vol(RPN)
vol(RPN )−vol(P(ε))

)
ensures we have a covering of RPN \ P(ε) with

good sets with probability at least 1− δ3.

Since, RPN \ P(ε) is covered, any new point that is added to RPN \ P(ε) will

be connected to at least one of the existing α vertices, which in turn means that the

number of connected components of the graph stays fixed as α. The lemma follows

by setting a = k

(
vol(RPN)

vol(RPN )−vol(P(ε))

)
.

Proof [of Theorem 4.3.1] We shall prove that, for all ε, δ, δ1, lims→∞
E[b0(G(N,P,s))]

s
is

bounded from above by vol(Pn)
vol(RPN )

plus some terms which depend on ε, δ, δ1. We know

that the number of connected components of a graph is bounded from above by the
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sum of the number of connected components of subgraphs of the graph that form a

decomposition of the original graph. Thus, for any ε > 0, we can estimate

E [b0(G(N,P , s))]

≤ E [b0(G1(N,P , s, ε))] + E [b0(G2(N,P , s, ε))] + E [b0(G3(N,P , s))]

≤
∫

Ω1(ε)∩(b0(G1(N,P,s,ε))≤s̃2/a)
b0(G1(N,P , s, ε)) dω︸ ︷︷ ︸

A

+

∫
Ω1(ε)c

b0(G1(N,P , s, ε)) dω︸ ︷︷ ︸
B

+

∫
Ω1(ε)∩(b0(G1(N,P,s,ε))≤s̃2/a)c

b0(G1(N,P , s, ε)) dω︸ ︷︷ ︸
C

+

∫
Ω2(ε)

b0(G2(N,P , s, ε)) dω︸ ︷︷ ︸
D

+

∫
Ω2(ε)c

b0(G2(N,P , s, ε)) dω︸ ︷︷ ︸
E

+

∫
Ω3

b0(G3(N,P , s)) dω︸ ︷︷ ︸
F

+

∫
Ωc3

b0(G3(N,P , s)) dω︸ ︷︷ ︸
G

, (4.21)

where the s̃2 and a are from Lemma 4.3.1. Because we are integrating over the space

where b0(G1(N,P , s, ε) ≤ s̃2/a), obviously,

A ≤ s̃2

a
. (4.22)

We apply the trivial bound of s on b0(G1(N,P , s, ε)) to get that, for all δ > 0,

B ≤ P [Ω1(ε)c] s ≤ δ

3
s, (4.23)

as long as s ≥ s̃1 = s̃1(δ, α), where α > 0 is any constant (cf. Proposition 4.3.1). By

Lemma 4.3.1, for all δ1 > 0, if s > s̃2 = s̃2(ε, δ1, N),

P [b0(G1(N,P , s, ε)) > s̃2/a |Ω1(ε)] < δ1,



80

for some specific a = a(ε,N). Thus,

C ≤ P [Ω1(ε)] · P [b0(G1(N,P , s, ε)) > s̃2/a |Ω1(ε)] s ≤ P [Ω1(ε)] δ1s ≤ δ1s. (4.24)

Trivially, b0 of a graph is bounded from above by the number of vertices in the graph.

Thus,

D ≤ P [Ω2(ε)]

(
s ·
(

vol (P(ε) \ P)

vol (RPN)

)
+ o(
√
s)

)
≤ εs+ o(

√
s). (4.25)

At the same time, as in case of (4.23), for all δ > 0,

E ≤ s.P [Ω2(ε)c] ≤ s
δ

3
, (4.26)

if s ≥ s̃1 = s̃1(δ, α), with α > 0 any constant (by Proposition 4.3.1). By Equa-

tion (4.31), we have that

F ≤ P [Ω3]

(
s ·
(

vol (P)

vol (RPN)

)
+ o(
√
s)

)
≤ s ·

(
vol (P)

vol (RPN)

)
+ o(
√
s). (4.27)

Finally, again, for all δ > 0, if s ≥ s̃1 = s̃1(δ, α), α > 0 any constant,

G ≤ s.P [Ωc
3] ≤ s

δ

3
. (4.28)

Putting equations (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), (4.28) in (4.21), we

have that for all ε > 0, δ > 0, δ1 > 0,

lim
s→∞

E [b0(G(N,P , s))]
s

≤ 0︸︷︷︸
A/s

+
δ

3︸︷︷︸
B/s

+ δ1︸︷︷︸
C/s

+ ε︸︷︷︸
D/s

+
δ

3︸︷︷︸
E/s

+
vol (P)

vol (RPN)︸ ︷︷ ︸
F/s

+
δ

3︸︷︷︸
G/s

.

(4.29)

Since Equation (4.29) is true for any choice of ε, δ, δ1, we have that

lim
s→∞

E [b0(G(N,P , s))]
s

≤ vol (P)

vol (RPN)
.
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4.3.3 b0 of arrangement of quadrics

Once we fix a scalar product on Rn+1, there is a natural isomorphism between the

vector space Sym(n+ 1,R) of real symmetric matrices and the space R[x0, . . . , xn](2),

which is given by associating to a symmetric matrix Q the quadratic form defined

by q(x) = 〈x,Qx〉. It turns out that the Kostlan measure is the pushforward of the

GOE3 measure under this linear isomorphism (see for e.g. (Lerario and Lundberg,

2016) for a discussion about this), i.e.:

Q is a GOE matrix ⇐⇒ q is a Kostlan polynomial.

Let RPN = P (Sym(n,R)) be the projectivization of the space of symmetric matri-

ces (here N =
(
n+2

2

)
−1) and consider the set Pn ⊂ RPN which is the projectivization

of the set of positive definite matrices (equivalently of the set of positive quadratic

forms):

Pn = {[Q] ∈ RPN |Q > 0}.

We endow Sym(n+1,R) with the Frobenius metric, which corresponds to the Bombieri-

Weil metric under the above linear isomorphism; on the projective space RPN we con-

sider the quotient Riemannian metric (for this metric the quotient map p : SN → RPN

is a local isometry), with corresponding volume density. In this way, if q is a random

Kostlan quadric, we have:

P [{] q is a positive form} =
vol(Pn)

vol(RPN)
. (4.30)

3Stands for Gaussian Orthogonal Ensemble (see (Tao, 2012) for a description).
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Remark 4.3.4 The relative volume of Pn in RPN is known (see e.g. (Majumdar

et al., 2011)) to decay exponentially fast when n increases:

lim
n→∞

1

n2
log

(
vol(Pn)

vol(RPN)

)
= − log 3

4
. (4.31)

The following result, which is due to Calabi (Calabi, 1964), gives a geometric

criterion for two quadrics intersecting in projective space.

Theorem 4.3.2 (Calabi, 1964) For n ≥ 1 let q1, q2 ∈ R[x0, . . . , xn](2) and denote

by Γ1,Γ2 ⊂ RP n their (possibly empty) zero sets. Define `(q1, q2) ⊂ RPN to be the

projective line `(q1, q2) := {[λ1q1 + λ2q2]}[λ1,λ2]∈RP 1 (a pencil of quadrics). Then:

Γ1 ∩ Γ2 6= ∅ ⇐⇒ ` ∩ Pn = ∅.

One can refer to (Lerario, 2012) for a proof of this using spectral sequences.

Relying on Calabi’s Theorem, and using Theorem 4.3.1, we shall now prove Theorem

4.1.2.

Proof [Proof of Theorem 4.1.2] As a consequence of Calabi’s Theorem (Theo-

rem 4.3.2), studying the average zeroth Betti number of Γ is equivalent to studying

the average number of connected components in the ostacle random graph model, i.e.

studying the average number of connected components of G(N,Pn, s).

In fact nonempty quadrics in projective space are connected and therefore the

number of connected components of Γ in this case equals the number of connected

components of the incidence graph of the zero sets Z(qi) of the sampled quadrics.

This incidence graph is a subgraph of the corresponding obstacle graph – we must

discard the points that fall inside Pn because the zero sets of quadrics in Pn is empty.

Thus
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lim
s→∞

E [b0(Γ)]

s
= lim

s→∞

E [b0(G(N,Pn, s))−
∑s

i=1 1 {qi ∈ Pn}]
s

= lim
s→∞

E [b0(G(N,Pn, s))]
s

− s · P [q ∈ Pn]

s

≤ vol (Pn)

vol (RPN)
− vol (Pn)

vol (RPN)
(by Theorem 4.3.1 and (4.30))

= 0. (4.32)

Equation (4.32) together with the fact that lims→∞
E[b0(Γ)]

s
is obviously non-negative

completes the proof.

4.3.4 A Ramsey-type result

Semi-algebraic graphs have been studied from the point of view of Ramsey theory.

(Alon et al., 2005) prove the following theorem.

Theorem 4.3.3 ((Alon et al., 2005)) For any semi-algebraic graph G = (V,E),

there exists a constant ε > 0, and two sets V1, V2 ⊂ V , each with size at least ε|V |,

such that either V1 × V2 ⊂ E, or (V1 × V2) ∩ E = ∅. Consequenly, there exists

another constant δ > 0, and V ′ ⊂ V of size at least |V |δ such that V ′ × V ′ ⊂ E or

(V ′ × V ′) ∩ E = ∅. In other words, one of the following is true:

1. There exists a clique of size nδ in G.

2. The complement of G has a clique of size nδ.

The quadrics graph, i.e. Γ, is a subgraph of G(N,Pn, s). It is formed by discarding

the vertices that fall inside Pn (because the zero sets of quadrics inside Pn are empty).

In Γ, an edge is placed between vertices if the corresponding quadrics intersect, thus it

is clear that Γ is a semi-algebraic graph. The following result rules out the probability

of large cliques in the complement graph of Γ.
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Corollary 4.3.1 (of Theorem 4.1.2) Let Γ be the graph of quadrics as defined in

Theorem 4.1.2. Denote by Γc the complement of the graph Γ on the same set of

vertices. Then, for any ε > 0,

lim
s→∞

P [Γc contains a clique of size εs] = 0.

Proof Let Ωa denote the event that there exists a clique of size εs in Γc. Thus we

have

0 = lim
s→∞

E [b0(Γ)]

s
(by Theorem 4.1.2)

= lim
s→∞

∫
Ωa
b0(Γ) dω +

∫
Ωca
b0(Γ) dω

s

≥ lim
s→∞

εs · P [Ωa] + 0

s
. (4.33)

The final step follows by noting that if the complement of Γ contains a clique of size

εs, it means that all εs vertices were isolated in Γ, in turn implying that Γ has at least

εs connected components. The corollary follows by Equation (4.33) and by noting

that lims→∞ P [Ωa] is obviously non-negative.

Juxtaposing with Theorem 4.3.3, Corollary 4.3.1 proves that, in the quadrics

random graph, among the two conditions of Theorem 4.3.3, a condition stricter than

(2) holds with probability 0 as the number of vertices tends to infinity.

4.4 More studies of the topology of random arrangements

The current study leaves a number of other open questions. First, we begin with

the definition of a sign condition.
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Definition 4.4.1 A sign condition σ on a tuple of polynomials ~P = (P1, . . . , Ps),

where each Pi ∈ R[X1, . . . , Xn], is an element of {−1, 1}s. The realization of σ =

(σ1, . . . , σs) over ~P , denoted R(σ, ~P ) is defined as

R(σ, ~P ) = {(x1, . . . , xn) ∈ Rn | sign(Pi(x1, . . . , xn)) = σi for all 1 ≤ i ≤ n}.

Given a tuple of polynomials, not all sign conditions are realizable. For instance,

if we consider the tuple (x− y, x− y− 5), the sign condition {−1, 1} is not realizable.

Trivially speaking, there could be 2s different sign conditions. (Warren, 1968) gives

an upper bound on the number of sign conditions which depends on parameters such

as degrees of Pi, in addition to s. It would be interesting to study questions about

sign conditions when the Pi are Kostlan distributed.

Question 2 Given a tuple of Kostlan distributed polynomials ~P = (P1, . . . , Ps),

Pi ∈ R[X1, . . . , Xn], each of degree Di, what is the probability that a sign condition

is realizable, i.e.

P
[
R(σ, ~P ) 6= ∅

]
=?

Note that the number of realizable sign conditions is a trivial lower bound on the

number of connected components of the complement of the union of the zero sets of

the polynomials, i.e. given P = (P1, . . . , Ps),

∣∣∣{σ ∈ {−1, 1}s | R(σ, ~P ) 6= ∅}
∣∣∣ ≤ b0

(
Rn \

(
s⋃
i=1

Z(Pi)

))
.

For Kostlan distributed ~P = (P1, . . . , Ps), let R be a random variable that denotes

the total number of realizable sign conditions. We have that

R =
∑

σ∈{−1,1}s
1
{
R(σ, ~P ) 6= ∅

}
. (4.34)
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If we know the answer to Question 2, or more realisitically, if we know bounds on

P
[
R(σ, ~P ) 6= ∅

]
, we will be able to obtain bounds on E [R] by just using linearity of

expectation on Equation (4.34).

Next, by Equation 4.4, we have that

E [R] ≤ E

[
b0

(
Rn \

(
s⋃
i=1

Z(Pi)

))]
,

and by Theorem 4.1.1, we know E [b0 (Rn \ (
⋃s
i=1 Z(Pi)))]. Any ‘gap’ between E [R]

and E [b0 (Rn \ (
⋃s
i=1 Z(Pi)))] can be studied further by studying the average Betti

numbers of realizable sign conditions.

Question 3 Given a tuple of Kostlan distributed polynomials ~P = (P1, . . . , Ps),

Pi ∈ R[X1, . . . , Xn], each of degree Di, obtain bounds on

E
[
bi

(
R(σ, ~P )

) ∣∣∣R(σ, ~P ) 6= ∅
]
?
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