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Research Statement

1 Research Summary

I would describe my research leitmotif as algebraic methods, taking inspiration from mathematical applications. So
far, I have worked along two directions.

1. Real-algebraic geometry and o-minimal geometry (both deterministic and random) toward applications
in incidence combinatorics (Sections 1.1 and 1.2).

2. Homological algebra toward applications in computational complexity theory (Section 1.3).

Currently, I am looking at some interactions between commutative algebra and complexity theory (Section
2.1.4).

I am usually drawn to the pattern of hearing about an interaction between algebraic methods1 and another
mathematical area, and then working on the algebraic questions. In some cases, the algebraic motivation for
my research has helped in contributing tools back to other areas which inspired the questions in the first place.
I find this to be an exciting way to appreciate the vantage point that algebra affords.

1.1 Quantitative topological bounds in random semi-algebraic and o-minimal geometry

This section provides background, motivation and a description of joint work with Saugata Basu and Antonio
Lerario [14].

1.1.1 Semi-algebraic and O-minimal geometry Real algebraic geometry is algebraic geometry over the
real numbers R, or more generally, over real closed fields. The primary focus of real algebraic geometry is
semi-algebraic sets, defined as elements of the boolean algebra over sets of the form {(x1, . . . , xn) ∈ Rn |
P(x1, . . . , xn) ≤ 0} for some P ∈ R[X1, . . . , Xn]. Classical algebraic geometry, usually done over algebraically
closed fields, enjoys the property that when an affine variety is projected down, the image is constructible.
However, real varieties don’t have this property; projections of real varieties can be semi-algebraic sets. Luck-
ily, due to the Tarski-Seidenberg theorem, semi-algebraic sets project down to semi-algebraic sets too.

Semi-algebraic sets are known to possess many ‘tameness’ properties in a topological sense, such as stratifi-
ability, finite traingulability, etc., which makes their study feasible. Grothendieck in his Esquisse d’un Programme
[27] suggested that it would be important to - “...investigate classes of sets with the tame topological properties
of semialgebraic sets...”.

semi-algebraic sets definable sets

The answer to this is o-minimal geometry, introduced by
Knight, Pillay and Steinhorn [42, 33, 43]. O-minimal geometry,
whose genesis was in model theory, is an axiomatic generalization
of semi-algebraic geometry, in so much as, many results about semi-
algebraic sets are actually corollaries of results in o-minimal geom-
etry. S = (Sn)n∈N, with Sn ⊂ P(Rn), is an o-minimal structure if

it satisfies certain axioms. Elements of o-minimal structures are called definable sets, and definable sets often
have some of the ’topological tameness’ properties that semi-algebraic sets have.

The smallest structure containing all semi-algebraic sets is known to be o-minimal; however, the important
point is that this is not the only one. There are now many more structures which have been proved to be o-
minimal - e.g. smallest structure containing sets defined by the exponential function [52, 32], restricted analytic
functions [49], Pfaffian functions [53], etc.

1.1.2 Quantitative bounds on topology of semi-algebraic and definable sets Quantitative bounds on the
topology of sets arising in semi-algebraic geometry and o-minimal geometry have been studied for pure math-
ematical interest, because they shed light on the topological complexity of these sets, and, for effecting funda-
mental advances in real algebraic geometry, discrete geometry, statistical learning theory, convex optimization,
algebraic complexity theory, etc. [9]. Given a semi-algebraic set S ⊂ Rn, defined by at most m equations, each

1In the broad sense of including algebraic geometry, algebraic topology, commutative algebra, representation theory, etc.
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of degree at most d, a prototypical topological question is – bound the Betti numbers of S in terms of m, d, n.
The first results along this line were obtained by Oleinik and Petrovski [41], and later by Thom [47] and Milnor
[38], who proved a bound of O(d)n on the sum of Betti numbers of any real algebraic variety in Rn defined
by polynomials of degree at most d. This has been generalized to other types of semi-algebraic sets in several
different ways, for e.g. [12, 11], and relatively more recently, e.g. [5, 6]. There has also been some work on
Betti number bounds in o-minimal geometry, although the progress has not matched semi-algebraic geometry.
For instance, [8] generalizes many quantitative bounds already known for semi-algebraic sets to the case of
definable sets.

1.1.3 Departure point for our work One need for quantitative bounds from semi-algebraic geometry is in
the polynomial partitioning theorem. Introduced in the seminal works of Guth and Katz [29, 28], the theorem has
been critical in several types of problems in incidence geometry, e.g. [29, 46, 31]. It allows the decomposition
of a given geometric arrangement into sub-arrangements of smaller size, thereby allowing a divide-and-conquer
approach to the solution of a combinatorial problem. It continues to be critically important, to this day [3, 2],
in resolving long-standing open problems in discrete geometry. This result strongly relies on the Bezout-type
bounds of [5, 6].

Parallelly, incidences between definable sets over arbitrary o-minimal expansions of R has become an active
research area as well [10, 21, 22]. The progress along this direction has been significantly slower though; each
of these results use idiosyncratic techniques which don’t really suggest methods of attack for other problems.
One matter that has stymied progress is the unavailability of a polynomial partitioning type result for definable
sets. Needless to say, an o-minimal polynomial partitioning theorem would enable progress on a lot of different
fronts, and would potentially provide greatly simplified proofs of already proved results.

1.1.4 Pathologies in the intersection of definable hypersurfaces and algebraic varieties We now have the
right context to summarize the main results in [14]. The primary ingredient required for o-minimal polynomial
partitioning is control over the Betti numbers of the intersection of any fixed definable subset of RPn with
real algebraic hypersurfaces of growing degrees. Our first result gives a caution to this question. Given a
sequence {Zd}d∈N of hypersurfaces, we construct a definable hypersurface Γ ⊂ RPn containing a subset D
homeomorphic to a disk, and a family of polynomials {pm}m∈N of degree deg(pm) = dm such that

(D, Z(pm) ∩ D) ∼ (Rn−1, Zdm), (1)

i.e. the zero set of pm in D is ambient-diffeotopic to Zdm in Rn−1. In other words, the intersection of Γ with a
hypersurface of degree d can be as complicated as we want. Also, we have that the intersection is transversal,
thus rendering the pathological intersection stable under mild perturbations.

The above is in sharp contrast with the case when Γ is semialgebraic, where, by the results in [6], the
homological complexity of the zero set of a polynomial p on Γ is bounded by a polynomial in deg(p). This
result represents a dampener for hopes of a polynomial partitioning theorem on definable sets.

1.1.5 Random algebraic geometry Given a definable hypersurface Γ, we now know that there can be poly-
nomials, such that Γ restricted to the zero set of the polynomial has pathological topology. Is it true that most
polynomials have pathological intersection? Usually, what does the topology of the intersection look like? We
give an answer to this question, only after introducing rigorous definitions of most and usually.

We consider a measure called the Edelman-Kostlan measure on the space of homogeneous polynomials of
degree d in n+ 1 variables, defined by choosing each coefficient of p = ∑|α|=d ξαxα0

0 · · · x
αn
n independently from

a standard Gaussian distribution (i.e. ξα ∼ N (0, d!/α0!...αn !)). This measure is the restriction of the Fubini-Study
measure to the space of real polynomials. The variances of the gaussian random variables d!/α0!...αn ! are chosen
in such a way that the resulting probability distribution is invariant under orthogonal change of variables
(there are no preferred points or directions in RPn, where zeroes of p are naturally defined). Moreover, if we
extend this probability distribution to the whole space of complex polynomials, by replacing real with complex
Gaussian variables, it can be shown that this extension is the unique Gaussian measure which is invariant
under unitary change of variables. This makes real Kostlan polynomials a natural object of study. This model
for random polynomials received a lot of attention since the pioneering works of Edelman, Kostlan, Shub and
Smale [23, 45, 44] on random polynomial systems solving.
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1.1.6 Pathologies are rare Using morse theoretic arguments, we show that for any smooth compact definable
Γ, for most polynomials a Bézout-type bound holds for the intersection Γ ∩ Z(p), i.e. for every 0 ≤ k ≤ n− 2
and t > 0:

P
[
bk(Γ ∩ Z(p)) ≥ tdn−1

]
≤ cΓ

td
n−1

2
, (2)

for some constant cΓ depending on the volume of Γ, where the probability is w.r.t. the Kostlan measure over
the space of homogeneous polynomials of degree d in n + 1 variables. On one hand, our first result seems to
be a strong hindrance to have an o-minimal analogue of polynomial partitioning. However, on the other hand,
we also prove that it is rare for pathological behavior to be exhibited. This gives some hope that a modified
version of the technique can still be applicable to incidence questions. See Section 2.1.1 for how this result can
be potentially used to obtain an o-minimal version of polynomial partitioning.

1.2 Betti numbers of random hypersurface arrangements

This section provides a summary of another joint work with Saugata Basu and Antonio Lerario [15].

1.2.1 Random hypersurface arrangements Continuing the study of the topology of random algebraic sets,
we ask the following question - given random homogeneous polynomials P1, . . . , Ps, of degrees d1, . . . , ds, in
n + 1 variables, what is the topological complexity of Γ =

⋃s
j=1 Z(Pj) ⊂ RPn? Objects of this type appear quite

naturally, and as explained before, partitioning problems is one example. Our first result gives information on
the number of connected components of RPn\Γ. Using a random spectral sequence argument, we show that

E [b0(RPn \ Γ)] = ∑
I⊂[s]
|I|=n

√
∏
i∈I

di + O(max{d1, . . . , ds}(n−1)/2sn−1). (3)

This study suggests a number of other questions regarding sign conditions on Kostlan hypersurface ar-
rangements; see Section 2.1.2 for more.

RPN

P

1.2.2 Random quadrics arrangements Our next result deals instead with the asymp-
totic structure of Γ when d1, . . . , ds = 2. This is the first non-trivial case, since for an
arrangement of hyperplanes (i.e. with all degrees equal to one), the expected value
of the topological complexity will coincide with that of deterministic generic arrange-
ments. Since, it is known that the growth of the Betti numbers of semi-algebraic sets
defined by quadratic polynomials show different behavior compared to that of general
semi-algebraic sets (see e.g. [7, 13] for the deterministic case and [36, 37] in the random
setting), it could be expected that the average topological complexity of arrangements

consisting of quadric hypersurfaces would be smaller than in the general case (at least in the dependence on
the number s of hypersurfaces).

It turns out that in the case of quadrics, the problem of understanding the number of connected components
of Γ is related (via a theorem of Calabi [20]) to the connectivity of a certain random graph model, and can be
studied in a precise way. The random graph model is as follows. We pick a semi-algebraic convex subset
P ⊂ RPN and we sample independent points q1, . . . , qs from the uniform distribution on RPN . The vertices of
the random graph are points {v1, . . . , vs} (one for each sample) and we put an edge between vi and vj, if and
only if i 6= j and the geodesic completion of the line connecting qi and qj does not intersect P .

We prove a result which quantifies the expected number of connected components of this random graph
model, which could be of independent interest. Using this, we show that in the case of quadrics

lim
s→∞

E [b0(Γ)]
s

= 0, (4)

which is a tighter bound than what our more general result suggests.
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1.3 Algebraic methods in complexity theory

The field of computational complexity theory attempts at classifying problems according to the amount of
computational resources required to solve them [51]. While knowing how efficiently a problem can be com-
puted is obviously a matter of utmost engineering importance, it also has deep philosophical implications [1].
Theorems in complexity theory can be regarded as ‘quantitative epistemology’2 in that they delineate the na-
ture of knowledge using the language of mathematics. Naturally, complexity theory has shown interactions
with nearly every area of pure mathematics - algebra, analysis, probability, logic, etc.

LOG
Time

LOG
Space

P NP

NPC

co
-N

PTIM
E

PSPACE

EXPTIME

EXPSPACE

...

ELEMENTARY
...

2EXPTIME

RSome of the topics at the intersection of algebraic geometry,
representation theory and computational complexity theory are
the complexity of matrix multiplication, the VP != VNP conjec-
ture3 (see e.g. [35]), and algebraic decision and computation
trees. Here, we shall focus on the latter two connections. We
shall begin by describing some interactions of homological alge-
bra with decision/computation tree lower bounds (Sections 1.3.1
and 1.3.2), as well as the VP 6= VNP conjecture (Section 2.2.1). Fi-
nally, Section 2.1.4 deals with interactions between commutative
algebra and complexity theory.

Input: X, Y

f1 ← X ∗ X

f2 ← 2 ∗ f1

f3 ← Y ∗Y

f4 ← f2 + f3

f5 ← f4

“YES”

2X
2 +

Y
2 <

0

“NO”

2X2 + Y2 = 0

“YES”

2X 2
+

Y 2
>

0

Computation

Branch

Leaf

1.3.1 Topological invariants in complexity theory The algebraic computation
tree is a model of computation. It is a representation of the computational steps
that a Turing machine would execute, and it can be used for deciding if an in-
put point belongs to a particular semialgebraic set. Obtaining a lower bound on
the height of algebraic computation trees for a particular problem represents a
fundamental barrier that no procedure can overcome. Lower bounds are usually
notoriously difficult to prove; among the various viable methods for obtaining
lower bounds, one of the most popular ones is where topological invariants such
as the Euler characteristic and Betti numbers are used. This approach has a long
history beginning from [16, 54], right up to the most recent result of Gabrielov
and Vorobjov [24] who show that the height of an algebraic computation tree to
decide membership in a semi-algebraic set S ⊂ Rn is bounded from below by
c1 log bm(S)

m+1 − c2n, where b∗(·) are the singular Betti numbers.

1.3.2 Complexity of deciding tensor rank The rank of an arbitrary tensor T ∈ F⊗
d
i=1ni is the minimum r

such that T can be written as a sum of r rank-one tensors: T = ∑r
`=1

(⊗d
i=1 u(`)

i

)
. In ongoing work with Joshua

Grochow, we are working on computing the cohomology rings of tensor spaces of fixed rank. For instance, we
have that the cohomology ring of the space of tensors of rank exactly one (say X ⊆ C

⊗d
i=1 ni ) is

H∗(X, Z) ∼= Z[X1, . . . , Xd]
/〈

Xn1+1
1 , . . . , Xnd+1

d , ∑d
i=1 Xi

〉
, (5)

where each Xi has degree two. We have computed the cohomology of the space of tensors of rank exactly two,
and are now working on computing the cohomology ring of the space of tensors of rank at most 2. See 2.1.3 for
more discussion along this direction. Aside from providing important topological information, these results
portend lower bounds on procedures to test tensor rank (c.f. Section 1.3.1).

2 Current and Future Directions

In this section, I shall describe things that I am working on now (Section 2.1), as well as things that I am
interested to work on in the future, both near and distant (Section 2.2).

2Words borrowed from Scott Aaronson.
3The algebraic version of the P 6= NP conjecture.
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2.1 Current work

Below I shall describe some of the immediate problems that I am working on. There certainly are obvious and
incremental extensions of the works already described that can be made, as well as substantial difficult open
problems. Here I shall focus only on the latter. As before, I continue to draw inspiration from interactions
with incidence combinatorics (Sections 2.1.1 and 2.1.2), and computational complexity theory (Sections 2.1.3
and 2.1.4).

candidates
for parti-
tioning

polynomials
with patho-
logical inter-
section

SUITABLE PARTITIONING POLYNOMIAL

2.1.1 O-minimal polynomial partitioning With Saugata Basu and Antonio Ler-
ario, we continue to investigate if a polynomial partitioning theorem for definable
sets is feasible. We proved in [14] that for any definable hypersurface Γ ⊂ RPn,
if p is a random Kostlan homogeneous polynomial of degree d in n + 1 variables,
P [b0(Γ ∩ Z(p)) & dn] . 1√

dn . This means that the measure of bad polynomials
grows smaller with increasing degree. If we are able to prove that the measure of
the set of polynomials with properties desirable for partitioning is strictly & 1√

dn ,
by the probabilistic method, we would have proved that there exists a polynomial which desirable properties,
which also does not have pathological topological complexity on restriction to any definable hypersurface Γ,
giving us the much needed o-minimal polynomial partitioning theorem.

2.1.2 Topology of random sign conditions In [15], we show that the expected total Betti number of RPn \ Γ
has the same order as that of the zeroth Betti number (Equation 3), suggesting a conjecture that a random cell,
on average, is homotopy equivalent to a point. Also, for instance, if we had s Kostlan polynomials each of
degree d, then our results show that there are on average sndn/2 connected components in the complement of
the zero set of the arrangement. In principle, there are 2s sign conditions, which means that there could in
principle be 2s connected components in the complement of the zero set of the arrangement. Consequently,
for certain values of s, d, it means that many of these 2s conditions are unrealizable. Thus, one question is to
study the probability of a sign condition on an arrangement of Kostlan polynomials to be realizable. Another
question is to study the average Betti numbers of realizable sign conditions. This will have applications in
partitioning random configurations.

2.1.3 Cohomology rings of tensors of fixed border rank With Joshua Grochow, we are continuing to com-
pute the cohomology of various spaces of interest in computational complexity theory. Continuing our work
on computing the cohomology of the space of tensors of fixed rank, we are now working on the space of ten-
sors of rank at most 2. The rank 2 case crucially relies on a characterization of Kruskal [34]. As a first step, we
are computing the de Rham cohomology of matrices of rank at most 2 (defined by the vanishing of all 3× 3
determinants). Aside, using a particular spectral sequence of Gabrielov-Vorobjov-Zell [25], we believe we have
a simple way of computing the cohomology ring of the symmetric square (Sym2(·)) of various spaces, many
of which appear to be currently unknown ([18] contains a discussion about the state-of-art). Naturally, after
this, we expect to continue to study tensor spaces of higher rank.

2.1.4 Ulrich complexity Independently, I am currently looking at the work of Blaser et al. [17] where they
propose a notion of complexity of polynomials and varieties called Ulrich complexity. For a homogeneous
polynomial f , the ulrich complexity of f is the smallest r such that there exists a square matrix M of homo-
geneous linear forms with det M = f r, and there is a matrix N with M · N = f · I. They compute the Ulrich
complexity for certain specific examples and conjecture that in general, it might be easier to compute than de-
terminantal complexity. Valiant’s VP != VNP conjecture [48] would imply exponential behavior of the Ulrich
complexity of the permanent of an n× n matrix as well, and thus it is an open problem to prove that the Ulrich
complexity of the n-permanent is at least exponential in n.

A more general open problem, which is a special case of the Buchweitz–Greuel–Schreyer conjecture [19],
is to prove that the Ulrich complexity of any homogeneous f is bounded from below by 2ds( f )/2e−2, where
s( f ) denotes the codimension of the singular locus of f . Also, they introduce interesting connections with
commutative algebraic concepts. For R = k[X0, . . . , Xn] /I , F is defined to be an Ulrich module if F is a maximal
Cohen-Macaulay R-module and also has a free resolution over k[X0, . . . , Xn] whose differentials are matrices
of linear forms. They extend the definition of Ulrich complexity to all projective varieties as the infimum of
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the rank of an Ulrich module on the variety. Another open problem is to actually construct the corresponding
coherent sheaves, called Ulrich sheaves. This has been done on hypersurfaces [4], but it is unknown even for
codimension 2.

Finally, it would also be interesting to study the expected Ulrich complexity of a Kostlan distributed poly-
nomial. A Kostlan polynomial is non-singular with probability 1, so it is reasonable to expect that the expected
Ulrich complexity should be bounded from above by a constant.

2.2 Future work

There are two properties that I think will characterize my research for the foreseeable future. First, any question
that I study will likely have algebraic methods in a non-trivial way. Second, I would like to work on questions
where an answer would have some conceptual meaning, i.e. something beyond shaving off a log factor with
idiosyncratic techniques. I’d like to keep a balance between questions which are concrete and focused (Sections
2.2.1 and 2.2.2), and directions which are more exploratory (Sections 2.2.3 and 2.2.4). In this section, I will detail
some of the larger plans that I have.

2.2.1 Cohomology rings of the determinantal variety, and ΣΠΣ circuits In the same vein as our efforts to
obtain the cohomology rings of the space of tensors of fixed border rank, it would be important to compute the
topology of other spaces of interest as well. One such is space is the orbit closure of the n× n determinant detn,
i.e GL(n2, F).detn ⊂ Symn(Fn×n)∗. The geometric complexity theory program proposed by Mulmuley and
Sohoni [39, 40] equates Valiant’s VP 6= VNP conjecture [48] to a representation-theoretic problem of separating
the orbit closure of the determinant from the orbit closure of the permanent. The idea is to cast the problem in
algebraic language with the hope that advanced tools in the fertile areas of algebraic geometry and represen-
tation theory will allow us to make progress on the problem. While separation is obviously an astronomically
difficult task, computing the cohomology of these spaces would help us obtain a coarse understanding of the
geometry of these spaces and thus be a definitive first step.

Another space of interest is the subspace of polynomials that can be represented in ΣΠΣ form, i.e. the
image of the map Ft ⊗Fd ⊗Fn+1 → F[X1, . . . , Xn](≤d), mapping

(cijk)i∈[t],j∈[d],k∈[n+1] 7→
t

∑
i=1

d

∏
j=1

(
cij1 +

n+1

∑
k=2

cijkxk−1

)
. (6)

While these spaces have been actively studied, very little is known about their cohomology.

2.2.2 Complexity of the image of a polynomial map As suggested in this work by Grochow [26] - For a
polynomial map φ : Fn → Fm, given parameters such as the degree, circuit size, or monomial sparsity of φ, one
would like to know the ‘complexity’ of the image of φ in terms of the number of Zariski-closed sets required to
describe it, the complexity of the ideals of those sets, and the complexity of the boolean combination itself. The
image φ(Fn) can obviously be described by the formula ψ : ∃(x1, . . . , xn) such that F1(x1, . . . , xn, y1, . . . , ym) =
. . . = Fm(x1, . . . , xn, y1, . . . , ym) = 0. Let ψ′ be the quantifier-free version of ψ. This question is tantamount to
studying the complexity of ψ′. One way to approach this problem would be to recast quantifier elimination
algorithms, e.g. [30], and provide guarantees in terms of the parameters of ψ.

2.2.3 Minimally encapsulating simple semi-algebraic set Given a semi-algebraic set S ⊂ ∆n whose de-
scription is given, is there an algorithm to output another semi-algebraic set S′ ⊃ S such that the lebesgue
measure of S′ \ S is minimized, and S′ has ‘constant description complexity‘, i.e. its description is given by a
constant number of polynomials each with a constant number of monomials? In other words, given a semi-
algebraic set, you want to find a candidate within a parametric family of semi-algebraic sets that contains the
given semi-algebraic set and that minimizes the lebesgue measure of the difference.

This process generalizes many concentration of measure inequalities. For instance, the Markov’s inequality
defines a semi-algebraic set that minimally contains the semi-algebraic set {0 ≤ p1, . . . , pn ≤ 1, ∑n

i=1 pi =
1 ∑n

i=1 i · pi = µ}. Thus an algorithm to solve this problem would potentially be an algorithm that can propose
new concentration inequalities.
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2.2.4 Singularity theory for statistical learning theory I am very curious to study the work of Watanabe [50]
which introduces techniques from singularity theory into statistical learning. Many statistical models such as
neural networks, hidden markov models, etc, are known to be singular, i.e. their Fisher information matrix
(depends on the probability density and the parameter space) has determinant 0. The viewpoint presented
in this book is that, using singularity theory concepts, better understanding, and consequently more accurate
statistical estimation, can be achieved in these models.
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255–265, 1965.

[48] Leslie G Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual ACM symposium on
Theory of computing, pages 249–261. ACM, 1979.

[49] Lou Van den Dries. A generalization of the tarski-seidenberg theorem, and some nondefinability results.
Bulletin of the American Mathematical Society, 15(2):189–193, 1986.

[50] Sumio Watanabe. Algebraic geometry and statistical learning theory, volume 25. Cambridge University Press,
2009.

[51] Avi Wigderson. P, np and mathematics–a computational complexity perspective. In Proc. of the 2006
International Congress of Mathematicians, volume 3, 2006.

[52] Alex J Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted
pfaffian functions and the exponential function. Journal of the American Mathematical Society, 9(4):1051–
1094, 1996.

[53] Alex J Wilkie. A theorem of the complement and some new o-minimal structures. Selecta Mathematica,
New Series, 5(4):397–421, 1999.

[54] Andrew Chi-Chih Yao. Decision tree complexity and betti numbers. Journal of computer and system sciences,
55(1):36–43, 1997.


	Research Summary
	Quantitative topological bounds in random semi-algebraic and o-minimal geometry
	Semi-algebraic and O-minimal geometry
	Quantitative bounds on topology of semi-algebraic and definable sets
	Departure point for our work
	Pathologies in the intersection of definable hypersurfaces and algebraic varieties
	Random algebraic geometry
	Pathologies are rare

	Betti numbers of random hypersurface arrangements
	Random hypersurface arrangements
	Random quadrics arrangements

	Algebraic methods in complexity theory
	Topological invariants in complexity theory
	Complexity of deciding tensor rank


	Current and Future Directions
	Current work
	O-minimal polynomial partitioning
	Topology of random sign conditions
	Cohomology rings of tensors of fixed border rank
	Ulrich complexity

	Future work
	Cohomology rings of the determinantal variety, and  circuits
	Complexity of the image of a polynomial map
	Minimally encapsulating simple semi-algebraic set
	Singularity theory for statistical learning theory



