Betti Numbers of Random Hypersurface Arrangements

Saugata Basu ${ }^{1}$, Antonio Lerario ${ }^{2}$, Abhiram Natarajan ${ }^{1}$
${ }^{1}$ Purdue University, ${ }^{2}$ SISSA (Trieste) and Florida Atlantic University

PURDUE

FAU

Complexity of Arrangements

- Goal: Betti numbers of arrangements of algebraic sets, i.e. $\bigcup_{i=1}^{s} Z\left(P_{i}\right)$ important research area with applications
- Previous work: $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, max degree d : Sum of Betti nos. Individual Betti numbers $\sum_{i \geq 0} b_{j}\left(U_{i=1}^{S} Z\left(P_{i}\right)\right)=O\left(s^{n} d n\right) b_{j}\left(U_{i=1}^{s} Z\left(P_{i}\right)\right)=s^{n-j} O(d)^{n}$
Question: What are the expected Betti numbers of an arrange-
ment of random polynomials?

Distribution on Space of Polynomials

- Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure: $P \sim \operatorname{KOS}(n, d)$ if

$$
P\left(X_{0}, \ldots, X_{n}\right)=\sum_{\substack{\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \\ \sum_{i=0}^{\alpha} \alpha_{i}=d}} \xi_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}},
$$

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent

- Orthogonally-invariance: for any $L \in O(n+1, \mathbb{R})$,

$$
P(\mathrm{X}) \equiv_{\text {dist. }} P(L X)
$$

- No points or directions are preferred in projective space

Expected Topology of Random Arrangements
Theorem (Basu-Lerario- \mathbf{N}): Let $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous Kostlan forms, $\operatorname{deg}\left(P_{i}\right) \leqslant d$, and $\Gamma=\bigcup_{i=1}^{s} Z\left(P_{i}\right)$. Then

$$
\mathbb{E}\left[b_{0}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=2 s^{n} d^{n / 2}+O\left(s^{n-1} d^{(n-1) / 2}\right)
$$

Also, for $0<i \leqslant n-1$

$$
\mathbb{E}\left[b_{i}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=O\left(s^{n-i} d^{(n-1) / 2}\right)
$$

Interpretation: Worst-case bound on b_{0} is $\binom{s}{n} O\left(d^{n}\right)$, while expectation is equal to $2 s^{n} d^{n / 2}$

Proof - Random Mayer-Vietoris Spectral Sequence

- A_{1}, \ldots, A_{s} - triangulations of $\Gamma_{1}, \ldots, \Gamma_{s}$, respectively
- $A_{\alpha_{0}, \ldots, \alpha_{p}}:=\bigcap_{i=0}^{p} A_{\alpha_{i}} ; C^{i}(A)$ - i-co-chains of A

Theorem: There exists a first quadrant cohomological spectral sequence converging to the cohomology of the union $\left(E_{r}, \delta_{r}\right)_{r \in Z}$

$$
E_{r}=\bigoplus_{p, q \in \mathbb{Z}} E_{r}^{p, q}, \quad \text { and } \quad E_{0}^{p, q}=\bigoplus_{\alpha_{0}<\ldots<\alpha_{p}} C^{q}\left(A_{\alpha_{0}, \ldots, \alpha_{p}}\right)
$$

with

$$
\delta_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}, \quad E_{r+1} \cong H_{\delta_{r}}\left(E_{r}\right) .
$$

Proposition: Define $e_{r}^{a, b}:=\mathbb{E}\left[\operatorname{rank} E_{r}^{a, b}\right] . e_{r+1}^{p, q} \leqslant e_{r}^{p, q}$, and, if $E_{r}^{p+r, q-r+1}=0, e_{r+1}^{p, q} \geqslant e_{r}^{p, q}-e_{r}^{p-r, q+r-1}$.

Betti Numbers of Sets Defined by Quadrics

Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets. What is the expected Betti number of a union of random quadrics?
Theorem (Basu-Lerario-N): Let $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous Kostlan quadrics. Define $\Gamma=\bigcup_{i=1}^{s} Z\left(P_{i}\right)$. Then

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}(\Gamma)\right]}{s}=0 .
$$

Interpration: Our general theorem suggests $\mathbb{E}\left[b_{0}(\Gamma)\right]=O(s)$.
For quadrics, we prove $\mathbb{E}\left[b_{0}(\Gamma)\right]=o(s)$.

Equivalence to Random Graph

- $\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad Q \mapsto\langle x, Q x\rangle$
- $\mathbb{R P}^{N}=\mathbb{P}(\operatorname{Sym}(n+1, \mathbb{R}))$, turns out sampling a Kostlan quadric is equivalent to sampling uniformly at random from S^{N}
Theorem (Calabi): Let $q_{1}, q_{2} \in \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}$ and $\Gamma_{i}=Z\left(q_{i}\right)$. Let $\mathcal{P}_{n} \subseteq S^{N}$ be the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R P}^{1}}$. Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{n}=\emptyset
$$

Interpretation: Sampling process is equivalent to a random graph: Sample s points uniformly at random from S^{N}. Join points iff the
great circle joining points does not pass through \mathcal{P}_{n}

Illustration of Random Graph

Average Connected Components
Theorem (Basu-Lerario-N): The expected number of connected component of $\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)$ satisfies:

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}\left(\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)\right)\right]}{s} \leqslant \frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(\mathbb{R P}^{N}\right)}
$$

Interpretation: Considering $\frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(S^{N}\right)}$ to be fixed, we have that the expected number of connected components is $O(s)$

Average Connected Components - Proof

- For any $b_{i} \subseteq \mathcal{P}_{n}(\varepsilon)^{c}$, there exists $G_{i} \subseteq \mathcal{P}_{n}(\varepsilon)^{c}$ $\mu\left(G_{i}\right)>0 \quad$ and $\quad \forall p \in G_{i}, g_{p}\left(\mathcal{P}_{n}\right) \supseteq b$
- Using coupon-collector type argument, bound number of samples required to collect all b_{i}.

Ramsey-Theoretic Result

Corollary (Basu-Lerario-N): Let Γ be the graph of s quadrics. Then, for any $\varepsilon>0$,
$\lim _{s \rightarrow \infty} \mathbb{P}\left[\Gamma^{c}\right.$ contains a clique of size $\left.\varepsilon s\right]=0$.
Theorem (Alon-Pach-et-al.) For any semi-algebraic graph
$G=(V, E)$, there exists a constant $\delta>0$, such that one of the following is true

1. There exists a clique of size $|V|^{\delta}$ in G.
2. The complement of G has a clique of size $|V|^{\delta}$

Interpretation: Large cliques are impossible in Γ^{c}

Question: What is the average number of connected components
in the above random graph denoted $\mathcal{G}(N, \mathcal{P}, s)$?

Obstacle Random Graph - Properties

- Good cone: for $q \in S^{N}$

$$
g_{q}\left(\mathcal{P}_{n}\right)=\left\{x \in S^{N} \mid \ell(q, x) \cap \mathcal{P}_{n}=\emptyset\right\}
$$

- Has flavour of $G_{n, p}$, but p is a random variable

$$
\mathbb{P}\left[q^{\prime} \text { gets connected to } q\right]=\frac{\operatorname{vol}\left(g_{q}\right)}{\operatorname{vol}\left(S^{N}\right)}
$$

- Probability random variables are not independent

