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Density Estimation

Goal: Accurately estimate a distribution from few samples.

Distribution family D
(over domain {1, ..., d})
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For given 0 < ¢ < 1, we want to achieve the following guarantee:
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Distributed Density Estimation

» Let D, be the set of all discrete distributions over {1, . .., d}.

» Let n be a sufficient sample size for learning family D C D, upto
error € under the {,-distance.

» From unknown P € D, we draw s samples on 7 machines each.

» Machines communicate according to protocol, yielding transcript T1.

» Referee runs an estimator © on the transcript Tl to output a
hypothesis distribution P = O(TT).

We study the following settings (see paper for full results):
» Learning arbitrary distributions in £; and ¢, error
» Learning k-histograms in £; and {, error
» Learning monotone distributions in {; error

Main message:
» Without structural assumptions, baseline is best possible.

» When the distribution has stucture, this can be leveraged
to improve algorithms.

Learning Arbitrary Discrete Distributions in {;-error

Folklore fact: @(%) samples are necessary and sufficient to learn any
discrete distribution up to {;-error €.

— Baseline communication protocol that uses O(% log d) bits of
communication.

Theorem: Any protocol that learns any distribution from D, upto

{1 error € must use Q(% log d) bits of communication when there is
one sample per machine.

Regime Lower Bound Upper Bound
s=1 Q(% og d) O(%Iog d)
s=0(d) O(dlog:) O(&)
s=0(%) Q(d og%) O(d log )

Lower Bound Proof Technique

» We construct a hard to learn distribution family as follows:
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» [he output of any good learning protocol can be used to learn the
bias d; of most of the pairs.

» We show: If the messages sent are repeated for lots of different
samples, the contribution of this player is not very helpful.

» A coin toss usually provides ©(&?) information. We show that the
information content is O(e?/t), when there are t repetitions.
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» Piecewise-constant over a partition of {1, ..., d} into k intervals.

Interval 1  Interval 2

» Many classes of distributions can be approximated by k-histograms
— It we can robustly learn k-histograms, we can learn these
distributions as well.

Upper Bounds for Robustly Learning k-Histograms in {,-error

Formal Problem Statement: Given ¢ > 0 and n i.i.d. samples from
a distribution P :{1,...,d} — R evenly distributed over m machines,

output a k-histogram h so that
) [HF— P||2} < C-OPTy+e,

where OPTk — mink_histograms h Hh — PHQ .

Theorem: For any ¢ > 0 there is an algorithm, which given n =
Q(1/€?) samples distributed over m machines, learns a k-histogram

to € error in £, using O(mk Iog% log d) bits of communication.

Our Techniques

Let P be the empirical distribution. For any interval /, let
~ . \2
e(l) =Y (P(i) — avg(P. /)) |
el
Key insight: This can be computed with few bits of communication

via linear sketching.
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We design an algorithm that only interacts through the data via
queries to e(/) and uses few queries.

— Communication-efficient algorithms for learning k-histograms.



