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Density Estimation

Goal: Accurately estimate a distribution from few samples.
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For given 0 < ε < 1, we want to achieve the following guarantee:

E
[
‖P̂ − P‖p

]
6 ε, p ∈ {1, 2} .
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Distributed Density Estimation

I Let Dd be the set of all discrete distributions over {1, . . . , d }.

I Let n be a sufficient sample size for learning family D ⊆ Dd upto
error ε under the `p-distance.

I From unknown P ∈ D, we draw s samples on n
s machines each.

I Machines communicate according to protocol, yielding transcript Π.

I Referee runs an estimator θ on the transcript Π to output a
hypothesis distribution P̂ = θ(Π).

Baseline: There exists a protocol to learn D up to error ε in `p-
distance that uses O(n log d) bits of communication.

Our Contribution

We study the following settings (see paper for full results):
I Learning arbitrary distributions in `1 and `2 error
I Learning k-histograms in `1 and `2 error
I Learning monotone distributions in `1 error

Main message:
I Without structural assumptions, baseline is best possible.

I When the distribution has stucture, this can be leveraged
to improve algorithms.

Learning Arbitrary Discrete Distributions in `1-error

Folklore fact: Θ( d
ε2) samples are necessary and sufficient to learn any

discrete distribution up to `1-error ε.

→ Baseline communication protocol that uses O( d
ε2 log d) bits of

communication.

Theorem: Any protocol that learns any distribution from Dd upto
`1 error ε must use Ω( d

ε2 log d) bits of communication when there is
one sample per machine.

Regime Lower Bound Upper Bound

s = 1 Ω( d
ε2 log d) O( d

ε2 log d)
s = Θ(d) Ω(d log 1

ε
) O( d

ε2)
s = Θ( d

ε2) Ω(d log 1
ε
) O(d log 1

ε
)

Lower Bound Proof Technique

I We construct a hard to learn distribution family as follows:

P[2i − 1] =
1 + 100δiε

d
P[2i ] =

1 − 100δiε

d
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I The output of any good learning protocol can be used to learn the
bias δi of most of the pairs.

I We show: If the messages sent are repeated for lots of different
samples, the contribution of this player is not very helpful.

I A coin toss usually provides Θ(ε2) information. We show that the
information content is O(ε2/t), when there are t repetitions.

k-Histograms

I Piecewise-constant over a partition of {1, . . . , d } into k intervals.

Interval 1 Interval 2 . . .
I Many classes of distributions can be approximated by k-histograms
→ If we can robustly learn k-histograms, we can learn these

distributions as well.

Upper Bounds for Robustly Learning k-Histograms in `2-error

Formal Problem Statement: Given ε > 0 and n i.i.d. samples from
a distribution P : {1, . . . , d }→ R evenly distributed over m machines,

output a k-histogram ĥ so that

E
[
‖ĥ − P‖2

]
6 C · OPTk + ε ,

where OPTk := mink−histograms h ‖h − P‖2 .

Theorem: For any ε > 0 there is an algorithm, which given n =
Ω(1/ε2) samples distributed over m machines, learns a k-histogram

to ε error in `2 using Õ(mk log 1
ε

log d) bits of communication.

Our Techniques

Let P̂ be the empirical distribution. For any interval I , let

e(I ) =
∑
i∈I

(
P̂(i) − avg(P̂ , I )

)2

.

Key insight: This can be computed with few bits of communication
via linear sketching.
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We design an algorithm that only interacts through the data via
queries to e(I ) and uses few queries.

→ Communication-efficient algorithms for learning k-histograms.


