Topology of random sets in

 semi-algebraic and o-minimal geometry with a view toward applicationsAbhiram Natarajan
Advisors: Prof. Saugata Basu, Prof. Elena Grigorescu Collaborators: Prof. Antonio Lerario (SISSA, Trieste), Prof. Joshua Grochow (U. Colorado, Boulder)

Outline

Acknowledgements

Introduction

Topology of Arrangement of Random Polynomials

Zeros of Polynomials on Definable Hypersurfaces

Zeros of Polynomials on Definable Hypersurfaces - (mini version)

References

Superbvisor - Prof. Saugata Basu

contributions $=\aleph_{0}$

Superbvisor - Prof. Elena Grigorescu

contributions $=\aleph_{0}$

Collaborator - prof. Antonio Lerario

great teacher, always teeming with ideas, very patient

Collaborator - Prof. Joshua Grochow

his niceness \gg his supersonic brilliance $=\infty$

Others

- Committee - Prof. Hemanta Maji, Prof. Simina Branzei
- Dr. Yi Wu - My advisor during my first year at Purdue

Others

- Committee - Prof. Hemanta Maji, Prof. Simina Branzei
$>$ Dr. Yi Wu - My advisor during my first year at Purdue
- Pavi and rest of my family
- Friends - Akash, Ashwin, Asish, Ganapathy, GV, Kaki, Kartik, Kaushal, Mayank, Negin, Omran, Onkar, Pavani, Rahul, Rohit, Sandeep, Shraddha, Sridhar, Vikhyat, Vikram, Vinit, Vivek, Warren

Outline

Acknowledgements

Introduction

Topology of Arrangement of Random Polynomials

Zeros of Polynomials on Definable Hypersurfaces

Zeros of Polynomials on Definable Hypersurfaces - (mini version)

References

Real Algebraic Geometry

- Algebraic Set: The locus of common zeros of $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{s}(x)=0\right\}
$$

Real Algebraic Geometry

- Algebraic Set: The locus of common zeros of $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
\begin{aligned}
& Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{s}(x)=0\right\} \\
& Z\left(x^{2}+y^{2}-1\right) \quad Z\left(y-x^{2}\right)
\end{aligned}
$$

Real Algebraic Geometry

- Algebraic Set: The locus of common zeros of $\left\{P_{1}, \ldots, P_{s}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
\begin{aligned}
& Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{S}(x)=0\right\} \\
& Z\left(x^{2}+y^{2}-1\right) \quad Z\left(y-x^{2}\right)
\end{aligned}
$$

- Semialgebraic set: A set $S \subseteq \mathbb{R}^{n}$ that is a finite Boolean combination of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], P(x) \geqslant 0\right\}
$$

Real Algebraic Geometry

- Algebraic Set: The locus of common zeros of $\left\{P_{1}, \ldots, P_{s}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
\begin{aligned}
& Z\left(P_{1}, \ldots, P_{S}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{S}(x)=0\right\} \\
& Z\left(x^{2}+y^{2}-1\right) \quad z\left(y-x^{2}\right)
\end{aligned}
$$

- Semialgebraic set: A set $S \subseteq \mathbb{R}^{n}$ that is a finite Boolean combination of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], P(x) \geqslant 0\right\}
$$

$$
\left\{-\left(x^{2}+y^{2}-1\right) \geqslant 0\right\} \quad\{y \geqslant x\} \wedge\{x \geqslant y\} \quad\left\{x^{2}+y^{2} \leqslant 2\right\} \wedge(\{y-x \geqslant 4\} \vee \neg\{x-y \leqslant 4\})
$$

Worst-case vs toerage-case

- Worst-case results are often overly pessimistic and unrealistic

Worst-case vs tverage-case

- Worst-case results are often overly pessimistic and unrealistic
- Example of a worst-case theorem: fundamental theorem of algebra says a univariate real polynomial of degree d has at most d real roots

Worst-case vs tverage-case

- Worst-case results are often overly pessimistic and unrealistic
- Example of a worst-case theorem: fundamental theorem of algebra says a univariate real polynomial of degree d has at most d real roots

Question
What is the average-case, and what does it even mean?

Distribution on Space of Polynomials

"... in the absence of any precise knowledge... one assumes a reasonable probability distribution ..." - Jean Ginibre

Distribution on Space of Polynomials

"... in the absence of any precise knowledge... one assumes a reasonable probability distribution ..." - Jean Ginibre

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure

Distribution on Space of Polynomials

"... in the absence of any precise knowledge... one assumes a reasonable probability distribution ..." - Jean Ginibre

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure
$-\mathrm{P} \sim \operatorname{KOS}(\mathrm{n}, \mathrm{d})$ if

$$
P\left(X_{0}, \ldots, X_{n}\right)=\sum_{\substack{\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \\ \sum_{i=0}^{n}, \alpha_{i}=d}} \xi_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}
$$

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{\mathrm{~d}!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent

Distribution on Space of Polynomials

"... in the absence of any precise knowledge... one assumes a reasonable probability distribution ..." - Jean Ginibre

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure
- $\mathrm{P} \sim \operatorname{KOS}(\mathrm{n}, \mathrm{d})$ if

$$
P\left(X_{0}, \ldots, X_{n}\right)=\sum_{\substack{\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \\ \sum_{i=0}^{n} \alpha_{i}=d}} \xi_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}
$$

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{\mathrm{~d}!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent

- This is a natural measure

Orthogonal Invariance of Kostlan Measure

- The distribution is orthogonally-invariant: for any $\mathrm{L} \in \mathrm{O}(\mathrm{n}+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

Orthogonal Invariance of Kostlan Measure

- The distribution is orthogonally-invariant: for any $L \in O(n+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

- Proof in degree 2, two variable case:
$-P\left(X_{0}, X_{1}\right)=\mathcal{N}(0,1) X_{0}^{2}+\mathcal{N}(0,2) X_{0} X_{1}+\mathcal{N}(0,1) X_{1}^{2}$

Orthogonal Invariance of Kostlan Measure

- The distribution is orthogonally-invariant: for any $L \in O(n+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

- Proof in degree 2, two variable case:
$-\mathrm{P}\left(\mathrm{X}_{0}, \mathrm{X}_{1}\right)=\mathcal{N}(0,1) \mathrm{X}_{0}^{2}+\mathcal{N}(0,2) \mathrm{X}_{0} \mathrm{X}_{1}+\mathcal{N}(0,1) \mathrm{X}_{1}^{2}$
- When $\binom{Y_{0}}{Y_{1}}=\operatorname{rot}(\theta)\binom{X_{0}}{X_{1}}$,

Orthogonal Invariance of Kostlan Measure

- The distribution is orthogonally-invariant: for any $\mathrm{L} \in \mathrm{O}(\mathrm{n}+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

- Proof in degree 2, two variable case:
- $\mathrm{P}\left(\mathrm{X}_{0}, \mathrm{X}_{1}\right)=\mathcal{N}(0,1) \mathrm{X}_{0}^{2}+\mathcal{N}(0,2) \mathrm{X}_{0} \mathrm{X}_{1}+\mathcal{N}(0,1) \mathrm{X}_{1}^{2}$
- When $\binom{Y_{0}}{Y_{1}}=\operatorname{rot}(\theta)\binom{X_{0}}{X_{1}}$,

$$
\begin{aligned}
P\left(Y_{0}, Y_{1}\right)= & \mathcal{N}(0,1)\left(X_{0} \cos \theta-X_{1} \sin \theta\right)^{2} \\
& +\mathcal{N}(0,2)\left(X_{0} \cos \theta-X_{1} \sin \theta\right)\left(X_{0} \sin \theta+X_{1} \cos \theta\right) \\
& +\mathcal{N}(0,1)\left(X_{0} \sin \theta+X_{1} \cos \theta\right)^{2} \\
=\mathcal{N} & (0,1) X_{0}^{2}+\mathcal{N}(0,2) X_{0} X_{1}+\mathcal{N}(0,1) X_{1}^{2}
\end{aligned}
$$

Orthogonal Invariance of Kostlan Measure

- The distribution is orthogonally-invariant: for any $\mathrm{L} \in \mathrm{O}(\mathrm{n}+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

- Proof in degree 2, two variable case:
- $\mathrm{P}\left(\mathrm{X}_{0}, \mathrm{X}_{1}\right)=\mathcal{N}(0,1) \mathrm{X}_{0}^{2}+\mathcal{N}(0,2) \mathrm{X}_{0} \mathrm{X}_{1}+\mathcal{N}(0,1) \mathrm{X}_{1}^{2}$
- When $\binom{Y_{0}}{Y_{1}}=\operatorname{rot}(\theta)\binom{X_{0}}{X_{1}}$,

$$
\begin{aligned}
P\left(Y_{0}, Y_{1}\right)= & \mathcal{N}(0,1)\left(X_{0} \cos \theta-X_{1} \sin \theta\right)^{2} \\
& +\mathcal{N}(0,2)\left(X_{0} \cos \theta-X_{1} \sin \theta\right)\left(X_{0} \sin \theta+X_{1} \cos \theta\right) \\
& +\mathcal{N}(0,1)\left(X_{0} \sin \theta+X_{1} \cos \theta\right)^{2} \\
=\mathcal{N} & (0,1) X_{0}^{2}+\mathcal{N}(0,2) X_{0} X_{1}+\mathcal{N}(0,1) X_{1}^{2}
\end{aligned}
$$

- No points or directions are preferred in projective space

Some results on random polynomials

- Expected number of real zeros of univariate Kostlan P is exactly $\sqrt{\operatorname{deg}(P)}$

Some results on random polynomials

- Expected number of real zeros of univariate Kostlan P is exactly $\sqrt{\operatorname{deg}(P)}$
- Necessary condition for $\mathrm{VP}_{\mathbb{C}} \neq \mathrm{VNP}_{\mathbb{C}}$:
- Koiran [2010] real τ-conjecture: number of real zeros of $F=\sum_{i=1}^{m} \prod_{j=1}^{k} f_{i j}$, where each $f_{i j}$ has at most t monomials, is $\mathrm{O}\left((\mathrm{m}+\mathrm{k}+\mathrm{t})^{\mathrm{O}(1)}\right)$; implies $\mathrm{VP}_{\mathbb{C}} \neq \mathrm{VNP}_{\mathbb{C}}$

Some results on random polynomials

- Expected number of real zeros of univariate Kostlan P is exactly $\sqrt{\operatorname{deg}(P)}$
- Necessary condition for $\mathrm{VP}_{\mathbb{C}} \neq \mathrm{VNP}_{\mathbb{C}}$:
- Koiran [2010] real τ-conjecture: number of real zeros of $F=\sum_{i=1}^{m} \prod_{j=1}^{k} f_{i j}$, where each $f_{i j}$ has at most t monomials, is $\mathrm{O}\left((\mathrm{m}+\mathrm{k}+\mathrm{t})^{\mathrm{O}(1)}\right)$; implies $V \mathrm{P}_{\mathbb{C}} \neq \mathrm{VNP} P_{\mathbb{C}}$
- Briquel and Bürgisser [2018] show that with standard Gaussian coefficients, $\mathbb{E}[$ real zeros of F$]=\mathrm{O}\left(\mathrm{mk}^{2} \mathrm{t}\right)$

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components
- $\mathrm{b}_{1}(\mathrm{X})=$ \#one-dimensional or circular holes

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components
- $\mathrm{b}_{1}(\mathrm{X})=$ \#one-dimensional or circular holes
- $\mathrm{b}_{2}(\mathrm{X})=$ \#two-dimensional voids or cavities, etc.

Betti Numbers - Examples

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
.	1	0	0	0
\ldots.	5	0	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
\cdots	1	0	0	0
\cdots	5	0	0	0
\bigcirc	1	1	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
\ldots	1	0	0	0
	5	0	0	0
	1	1	0	0
	1	0	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i} \geqslant 3$
\ldots	1	0	0	0
0	5	0	0	0
0	1	1	0	0
	1	0	0	0
				1

Betti Numbers - Examples

Why Betti Numbers?

- Betti numbers are invariant under continuous deformations (diffeomorphism \subseteq homeomorphism \subseteq homotopy equivalence)

Why Betti Numbers?

- Betti numbers are invariant under continuous deformations (diffeomorphism \subseteq homeomorphism \subseteq homotopy equivalence)
- They offer a measure of complexity - e.g. height of algebraic computation tree for membership in semialgebraic set is lower bounded in terms of the Betti numbers (Yao 1997)

Why Betti Numbers?

- Betti numbers are invariant under continuous deformations (diffeomorphism \subseteq homeomorphism \subseteq homotopy equivalence)
- They offer a measure of complexity - e.g. height of algebraic computation tree for membership in semialgebraic set is lower bounded in terms of the Betti numbers (Yao 1997)
- In applications in incidence geometry, computational geometry, etc., especially for polynomial partitioning, bounds on Betti numbers of semi-algebraic sets are very important

Outline

Acknowledgements

Introduction

Topology of Arrangement of Random Polynomials

Zeros of Polynomials on Definable Hypersurfaces

Zeros of Polynomials on Definable Hypersurfaces - (mini version)

References

Complexity of Arrangements

- Arrangement - finite collection of geometric objects

Complexity of Arrangements

- Arrangement - finite collection of geometric objects

Analysis of arrangements of algebraic sets, i.e. $\bigcup_{i=1}^{s} Z\left(P_{i}\right)$ important research area with applications in motion planning, etc. (Agarwal-Sharir 2000)

Complexity of Arrangements

- Arrangement - finite collection of geometric objects
- Analysis of arrangements of algebraic sets, i.e. $\bigcup_{i=1}^{s} Z\left(P_{i}\right)$ important research area with applications in motion planning, etc. (Agarwal-Sharir 2000)
- Knowledge of the Betti numbers of arrangements, has been used for understanding "combinatorial complexity" (Basu 2002)

Previous work on Arrangements

- Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965), Milnor (1964)) - $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, max degree d, then

$$
\sum_{j \geqslant 0} b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=O\left(s^{n} d^{n}\right)
$$

Previous work on Arrangements

- Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965), Milnor (1964)) - $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, max degree d, then

$$
\sum_{j \geqslant 0} b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=O\left(s^{n} d^{n}\right)
$$

- Bounds on individual Betti numbers (Basu 2003)

$$
b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=s^{n-j} O\left(d^{n}\right)
$$

Previous work on Arrangements

- Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965), Milnor (1964)) - $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]$, max degree d , then

$$
\sum_{j \geqslant 0} b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=O\left(s^{n} d^{n}\right)
$$

- Bounds on individual Betti numbers (Basu 2003)

$$
b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=s^{n-j} O\left(d^{n}\right)
$$

Question
What are the expected Betti numbers of an arrangement of random polynomials?

Expected Topology of Random Arrangements

Theorem (Basu-Lerario-N 2019b)
Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be homogeneous Kostlan forms, each of degree at most d . Let $\Gamma_{i} \subset \mathbb{R} \mathbb{P}^{n}$ be the zero set of P_{i}, and define $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$. Then

$$
\mathbb{E}\left[\mathrm{b}_{0}\left(\mathbb{R}^{p} \backslash \Gamma\right)\right]=2 s^{n} d^{n / 2}+\mathrm{O}\left(s^{n-1} \mathrm{~d}^{(n-1) / 2}\right)
$$

Also, for $0<i \leqslant n-1$

$$
\mathbb{E}\left[b_{i}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=\mathrm{O}\left(s^{n-i} d^{(n-1) / 2}\right)
$$

Expected Topology of Random Arrangements

Theorem (Basu-Lerario-N 2019b)
Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be homogeneous Kostlan forms, each of degree at most d. Let $\Gamma_{i} \subset \mathbb{R} P^{n}$ be the zero set of P_{i}, and define $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$. Then

$$
\mathbb{E}\left[\mathrm{b}_{0}\left(\mathbb{R}^{P^{n}} \backslash \Gamma\right)\right]=2 s^{n} d^{n / 2}+\mathrm{O}\left(s^{n-1} \mathrm{~d}^{(n-1) / 2}\right)
$$

Also, for $0<i \leqslant n-1$

$$
\mathbb{E}\left[b_{i}\left(\mathbb{R P}^{n} \backslash \Gamma\right)\right]=\mathrm{O}\left(s^{n-i} d^{(n-1) / 2}\right)
$$

Interpretation
Worst-case bound on b_{0} is $\binom{s}{n} \mathrm{O}\left(\mathrm{d}^{n}\right)$, while expectation is equal to $2 s^{n} d^{n / 2}$.

Betti Numbers of Sets Defined by \&uadrics

- Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets

Betti Numbers of Sets Defined by \&uadrics

- Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets
- $S \subseteq \mathbb{R}^{n}$ defined by $\left\{P_{i} \geqslant 0\right\}_{i \in[s]}, \operatorname{deg}\left(P_{i}\right) \leqslant 2$ (Barvinok 1997)

$$
\sum_{k \geqslant 0} b_{k}(S) \leqslant n^{O(s)}
$$

Betti Numbers of Sets Defined by \&uadrics

- Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets
- $S \subseteq \mathbb{R}^{n}$ defined by $\left\{P_{i} \geqslant 0\right\}_{i \in[s]}, \operatorname{deg}\left(P_{i}\right) \leqslant 2$ (Barvinok 1997)

$$
\sum_{k \geqslant 0} b_{k}(S) \leqslant n^{O(s)}
$$

Question

What is the expected Betti number of a union of random quadrics?

b_{0} of Quadrics' Arrangement

Theorem (Basu-Lerario-N 2019b)
Let $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous Kostlan quadrics. Let $\Gamma_{i} \subset \mathbb{R} \mathbb{P}^{n}$ be the zero set of P_{i}, and define $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$. Then

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}(\Gamma)\right]}{s}=0 .
$$

b_{0} of Quadrics' Arrangement

Theorem (Basu-Lerario-N 2019b)
Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be homogeneous Kostlan quadrics. Let $\Gamma_{i} \subset \mathbb{R} \mathbb{P}^{n}$ be the zero set of P_{i}, and define $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$. Then

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}(\Gamma)\right]}{s}=0
$$

Interpretation
Our general theorem suggests $\mathbb{E}\left[\mathrm{b}_{0}(\Gamma)\right]=\mathrm{O}(\mathrm{s})$. For quadrics, we prove $\mathbb{E}\left[\mathrm{b}_{0}(\Gamma)\right]=\mathrm{o}(\mathrm{s})$.

Quadrics Arrangement - proof

- Let $\operatorname{Sym}(n+1, \mathbb{R})$ be the vector space of $(n+1) \times(n+1)$ real symmetric matrices; we have

$$
\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad \mathrm{Q} \mapsto\langle x, \mathrm{Qx}\rangle
$$

Quadrics Arrangement - proof

- Let $\operatorname{Sym}(n+1, \mathbb{R})$ be the vector space of $(n+1) \times(n+1)$ real symmetric matrices; we have

$$
\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad \mathrm{Q} \mapsto\langle x, \mathrm{Q} x\rangle
$$

$>\mathbb{R P}^{\mathrm{N}}=\mathbb{P}(\operatorname{Sym}(n+1, \mathbb{R}))$ - projectivization of the space of symmetric matrices (here $\mathrm{N}=\binom{\mathrm{n}+2}{2}-1$)

Quadrics trrangement - proof

- Let $\operatorname{Sym}(n+1, \mathbb{R})$ be the vector space of $(n+1) \times(n+1)$ real symmetric matrices; we have

$$
\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad \mathrm{Q} \mapsto\langle x, \mathrm{Qx}\rangle
$$

$>\mathbb{R P}^{\mathrm{N}}=\mathbb{P}(\operatorname{Sym}(n+1, \mathbb{R}))$ - projectivization of the space of symmetric matrices (here $\mathrm{N}=\binom{\mathrm{n}+2}{2}-1$)

- Turns out sampling a Kostlan quadric is equivalent to sampling uniformly at random from S^{N}

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{n} \subseteq \mathrm{~S}^{\mathrm{N}}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{n}=\emptyset
$$

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{n} \subseteq S^{N}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{\mathrm{n}}=\emptyset .
$$

Interpretation
Our sampling process is equivalent to a random graph:

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{n} \subseteq S^{N}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{\mathrm{n}}=\emptyset .
$$

Interpretation
Our sampling process is equivalent to a random graph:

- Sample s points uniformly at random from S^{N}

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R} \mathbb{P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{\mathfrak{n}} \subseteq \mathrm{S}^{\mathrm{N}}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{\mathrm{n}}=\emptyset .
$$

Interpretation
Our sampling process is equivalent to a random graph:

- Sample s points uniformly at random from S^{N}
- Join points iff the great circle joining points does not pass through \mathcal{P}_{n}

Jllustration of 'Obstacle' Random Graph

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

$$
g_{q}\left(\mathcal{P}_{n}\right)=\left\{x \in S^{N} \mid \ell(q, x) \cap \mathcal{P}_{n}=\emptyset\right\} .
$$

Obstacle Random Graph - Properties

- Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

$$
g_{\mathrm{q}}\left(\mathcal{P}_{\mathrm{n}}\right)=\left\{x \in \mathrm{~S}^{\mathrm{N}} \mid \ell(\mathrm{q}, x) \cap \mathcal{P}_{\mathrm{n}}=\emptyset\right\} .
$$

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

- Has flavour of $G_{n, p}$, but p is a random variable

$$
\mathbb{P}\left[q^{\prime} \text { gets connected to } \mathrm{q}\right]=\frac{\operatorname{vol}\left(\mathrm{g}_{\mathrm{q}}\right)}{\operatorname{vol}\left(\mathrm{S}^{N}\right)}
$$

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

- Has flavour of $G_{n, p}$, but p is a random variable

$$
\mathbb{P}\left[q^{\prime} \text { gets connected to } \mathrm{q}\right]=\frac{\operatorname{vol}\left(\mathrm{g}_{\mathrm{q}}\right)}{\operatorname{vol}\left(\mathrm{S}^{N}\right)}
$$

- Probability random variables are not independent

Obstacle Random Graph

- For each pair of vertices u, v with an edge, the corresponding zero sets of the polynomials intersect

Obstacle Random Graph

- For each pair of vertices u, v with an edge, the corresponding zero sets of the polynomials intersect
- Model denoted $\mathcal{G}\left(\mathrm{N}, \mathcal{P}_{\mathrm{n}}, \mathrm{s}\right)$

Obstacle Random Graph

- For each pair of vertices u, v with an edge, the corresponding zero sets of the polynomials intersect
- Model denoted $\mathcal{G}\left(\mathrm{N}, \mathcal{P}_{\mathrm{n}}, \mathrm{s}\right)$

Question

What is the average number of connected components in the above random graph?

Average Connected Components

Theorem (Basu-Lerario-N 2019b)
The expected number of connected component of $\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)$ satisfies:

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}\left(\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)\right)\right]}{s} \leqslant \frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(\mathbb{R P}^{N}\right)}
$$

Average Connected Components

Theorem (Basu-Lerario-N 2019b)
The expected number of connected component of $\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)$ satisfies:

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}\left(\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)\right)\right]}{s} \leqslant \frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(\mathbb{R P}^{N}\right)}
$$

Interpretation
Considering $\frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(\mathbb{R P}^{\mathrm{N}}\right)}$ to be fixed, we have that the expected number of connected components is $\mathrm{o}(\mathrm{s})$.

Average Connected Components - Proof

Average Connected Components - Proof

Average Connected Components - Proof

Average Connected Components - Proof

Average Connected Components - Proof

《 For any $\mathrm{B}_{\mathrm{i}} \subseteq \mathcal{P}_{\mathrm{n}}(\varepsilon)^{\mathrm{c}}$, there exists $\mathrm{G}_{\mathrm{i}} \subseteq \mathcal{P}_{\mathrm{n}}(\varepsilon)^{\mathrm{c}}$,

$$
\mu\left(\mathrm{G}_{\mathrm{i}}\right)>0 \quad \text { and } \quad \forall \mathrm{p} \in \mathrm{G}_{i}, \mathrm{~g}_{\mathrm{p}}\left(\mathcal{P}_{\mathrm{n}}\right) \supseteq \mathrm{B}_{\mathrm{i}} .
$$

Average Connected Components - Proof

- For any $\mathrm{B}_{\mathrm{i}} \subseteq \mathcal{P}_{n}(\varepsilon)^{c}$, there exists $\mathrm{G}_{\mathrm{i}} \subseteq \mathcal{P}_{\mathfrak{n}}(\varepsilon)^{\mathrm{c}}$,

$$
\mu\left(\mathrm{G}_{\mathrm{i}}\right)>0 \quad \text { and } \quad \forall \mathrm{p} \in \mathrm{G}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{p}}\left(\mathcal{P}_{\mathrm{n}}\right) \supseteq \mathrm{B}_{\mathrm{i}} .
$$

- Using coupon-collector type argument, bound number of samples required to collect all B_{i}.

Future LOork

- Show strong bounds on the average number of connected components, at least for certain restricted types of obstacles

Future Work

- Show strong bounds on the average number of connected components, at least for certain restricted types of obstacles
- Other question about this random graph model

Future Work

- Show strong bounds on the average number of connected components, at least for certain restricted types of obstacles
- Other question about this random graph model
- We prove a Ramsey theoretic result - we prove large cliques will exist in the graph w.h.p.

Future LDork

- A sign condition on P_{1}, \ldots, P_{s} is the locus of e.g. $P_{1}(x)<0 \wedge P_{2}(x)>0 \wedge \ldots \wedge P_{s}(x)<0$

Future Work

- A sign condition on P_{1}, \ldots, P_{s} is the locus of e.g. $\mathrm{P}_{1}(x)<0 \wedge \mathrm{P}_{2}(x)>0 \wedge \ldots \wedge \mathrm{P}_{\mathrm{s}}(x)<0$
- There are 2^{s} sign conditions on $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}$

Future Work

- A sign condition on P_{1}, \ldots, P_{s} is the locus of e.g. $P_{1}(x)<0 \wedge P_{2}(x)>0 \wedge \ldots \wedge P_{S}(x)<0$
- There are 2^{s} sign conditions on $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}$

Future Questions:
\checkmark What is the probability of a sign condition on $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}$ to be realizable?
What are the expected Betti numbers of sign conditions?

Outline

Acknowledgements

Introduction

Topology of Arrangement of Random Polynomials

Zeros of Polynomials on Definable Hypersurfaces

Zeros of Polynomials on Definable Hypersurfaces - (mini version)

References

Generalize Semi-algebraic Geometry

$>\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$

Generalize Semi-algebraic Geometry

- $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$
- The activation functions in neural networks are transcendental, so the concepts are not semi-algebraic

Generalize Semi-algebraic Geometry

> $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$

- The activation functions in neural networks are transcendental, so the concepts are not semi-algebraic
- Is there a general theory?

Generalize Semi-algebraic Geometry

- $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$
- The activation functions in neural networks are transcendental, so the concepts are not semi-algebraic
- Is there a general theory?

Question
"...investigate classes of sets with the tame topological properties of semialgebraic sets..." - Grothendieck (Esquisse d'un Programme, 1997)

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, S_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying
\rightarrow All algebraic subsets of \mathbb{R}^{n} are in δ_{n}

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying

- All algebraic subsets of \mathbb{R}^{n} are in S_{n}
> S_{n} is closed under complementation, finite unions \& intersections

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying

- All algebraic subsets of \mathbb{R}^{n} are in S_{n}
$>S_{n}$ is closed under complementation, finite unions \& intersections
- If $A \in S_{n}, B \in S_{m}$, then $A \times B \in S_{n+m}$

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying
\checkmark All algebraic subsets of \mathbb{R}^{n} are in S_{n}
$>S_{n}$ is closed under complementation, finite unions \& intersections

- If $A \in S_{n}, B \in S_{m}$, then $A \times B \in S_{n+m}$
- If $\Pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates, $A \in S_{n+1}$, then $\Pi(A) \in \mathcal{S}_{n}$

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying
\downarrow All algebraic subsets of \mathbb{R}^{n} are in S_{n}
> S_{n} is closed under complementation, finite unions \& intersections

- If $A \in S_{n}, B \in S_{m}$, then $A \times B \in S_{n+m}$
- If $\Pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates, $A \in S_{n+1}$, then $\Pi(A) \in S_{n}$

Elements of δ_{1} are precisely finite unions of points and intervals

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure
\checkmark Other examples - \mathbb{R} with \exp function (e.g. $x^{3}+\mathrm{e}^{x+2 y} \leqslant 0$), restricted analytic functions (e.g. $\sin \chi^{2}=0$ on $[-1,1]$), etc.

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure
\checkmark Other examples - \mathbb{R} with \exp function (e.g. $x^{3}+\mathrm{e}^{x+2 y} \leqslant 0$), restricted analytic functions (e.g. $\sin \chi^{2}=0$ on $[-1,1]$), etc.
- Definable sets have a 'tame topology'

Betti Numbers of Definable Sets

- Real Analogue of Bezout theorem (Barone-Basu 2016): Given $\operatorname{deg}(Q) \ll \operatorname{deg}(P), \operatorname{dim}(Z(Q))=k$, then

$$
\mathrm{b}_{0}(\mathrm{Z}(\mathrm{Q}) \cap \mathrm{Z}(\mathrm{P})) \leqslant \mathrm{O}_{\mathrm{k}}\left(\operatorname{deg}(\mathrm{P})^{k}\right)
$$

Betti Numbers of Definable Sets

- Real Analogue of Bezout theorem (Barone-Basu 2016): Given $\operatorname{deg}(Q) \ll \operatorname{deg}(P), \operatorname{dim}(Z(Q))=k$, then

$$
\mathrm{b}_{0}(\mathrm{Z}(\mathrm{Q}) \cap \mathrm{Z}(\mathrm{P})) \leqslant \mathrm{O}_{\mathrm{k}}\left(\operatorname{deg}(\mathrm{P})^{k}\right)
$$

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao 2012)

Betti Numbers of Definable Sets

- Real Analogue of Bezout theorem (Barone-Basu 2016): Given $\operatorname{deg}(Q) \ll \operatorname{deg}(P), \operatorname{dim}(Z(Q))=k$, then

$$
\mathrm{b}_{0}(\mathrm{Z}(\mathrm{Q}) \cap \mathrm{Z}(\mathrm{P})) \leqslant \mathrm{O}_{\mathrm{k}}\left(\operatorname{deg}(\mathrm{P})^{k}\right)
$$

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao 2012)
- Incidences involving definable sets are actively being studied (Basu and Raz [2017], Chernikov and Starchenko [2015])

Betti Numbers of Definable Sets

- Real Analogue of Bezout theorem (Barone-Basu 2016): Given $\operatorname{deg}(Q) \ll \operatorname{deg}(P), \operatorname{dim}(Z(Q))=k$, then

$$
b_{0}(Z(Q) \cap Z(P)) \leqslant O_{k}\left(\operatorname{deg}(P)^{k}\right)
$$

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao 2012)
- Incidences involving definable sets are actively being studied (Basu and Raz [2017], Chernikov and Starchenko [2015])

Question
Given a definable hypersurface γ, and a degree D polynomial $\mathrm{P} \in \mathbb{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$, bound $\mathrm{b}_{\mathrm{k}}(\gamma \cap \mathrm{Z}(\mathrm{P}))$.

Topological Preliminaries

- Diffeomorphism: Bijective function ψ that is bi-differentiable

Topological Preliminaries

D Diffeomorphism: Bijective function ψ that is bi-differentiable

- Ambient diffeotopy: For manifolds $a \subseteq A, b \subseteq B$, we write

$$
(A, a) \sim(B, b)
$$

if there exists a diffeomorphism $\psi: A \rightarrow B$, and $\psi(a)=b$

Topological 仿eliminaries

- Diffeomorphism: Bijective function ψ that is bi-differentiable
- Ambient diffeotopy: For manifolds $a \subseteq A, b \subseteq B$, we write

$$
(A, a) \sim(B, b)
$$

if there exists a diffeomorphism $\psi: A \rightarrow B$, and $\psi(a)=b$

Definable Hypersurfaces \cap Darieties

Theorem (Basu-Lerario-N 2019a)
Let $\left\{\mathrm{Z}_{\mathrm{d}}\right\}_{\mathrm{d} \in \mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1}. There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{R P}^{n}$, a disk $\mathrm{D} \subset \Gamma$, and a sequence $\left\{p_{m}\right\}_{\mathrm{m} \in \mathbb{N}}$ of homogeneous polynomials with $\operatorname{deg}\left(p_{m}\right)=d_{m}$ such that the intersection $\mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \Gamma$ is stable and:

$$
\left(\mathrm{D}, \mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \mathrm{D}\right) \sim\left(\mathbb{R}^{n-1}, \mathrm{Z}_{\mathrm{d}_{\mathrm{m}}}\right) \text { for all } \mathrm{m} \in \mathbb{N}
$$

Definable Fypersurfaces \cap Darieties

Theorem (Basu-Lerario-N 2019a)
Let $\left\{Z_{d}\right\}_{\mathrm{d} \in \mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1}. There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{R P}^{n}$, a disk $\mathrm{D} \subset \Gamma$, and a sequence $\left\{\mathrm{p}_{\mathrm{m}}\right\}_{\mathrm{m} \in \mathbb{N}}$ of homogeneous polynomials with $\operatorname{deg}\left(p_{m}\right)=d_{m}$ such that the intersection $\mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \Gamma$ is stable and:

$$
\left(\mathrm{D}, \mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \mathrm{D}\right) \sim\left(\mathbb{R}^{n-1}, \mathrm{Z}_{\mathrm{d}_{\mathrm{m}}}\right) \text { for all } \mathrm{m} \in \mathbb{N}
$$

Interpretation
You can make the Betti numbers of the intersection of a definable hypersurface and an algebraic set arbitrarily large.

Definable Flypersurfaces \cap Algebraic Darieties

- Generalizes a result of Gwoździewicz et al. (1999)

Definable Flypersurfaces \cap Algebraic Darieties

- Generalizes a result of Gwoździewicz et al. (1999)
- For algebraic hypersurface γ,

$$
\mathrm{b}_{0}(\gamma \cap Z(P)) \lesssim \operatorname{deg}(P)^{n-1}
$$

Definable Heypersurfaces \cap Algebraic Darieties

- Generalizes a result of Gwoździewicz et al. (1999)
- For algebraic hypersurface γ,

$$
\mathrm{b}_{0}(\gamma \cap \mathrm{Z}(\mathrm{P})) \lesssim \operatorname{deg}(\mathrm{P})^{\mathrm{n}-1}
$$

- Our results shows that such a bound is not possible if we have a definable hypersurface

Definable Heypersurfaces \cap Algebraic Darieties

- Generalizes a result of Gwoździewicz et al. (1999)
- For algebraic hypersurface γ,

$$
\mathrm{b}_{0}(\gamma \cap \mathrm{Z}(\mathrm{P})) \lesssim \operatorname{deg}(\mathrm{P})^{\mathrm{n}-1}
$$

- Our results shows that such a bound is not possible if we have a definable hypersurface

Question How 'common' is the pathological case?

Average Topology of Definable Jypersurfaces on Algebraic Sets

Theorem (Basu-Lerario-N (2019a))
Let $\Gamma \subset \mathbb{R} \mathbb{P}^{n}$ be a regular, compact semi-analytic hypersurface, and let p be a random Kostlan polynomial of degree D . Then there exists a constant c_{Γ} such that for every $0 \leqslant k \leqslant n-2$, for every $t>0$

$$
\mathbb{E}\left[\mathrm{b}_{\mathrm{k}}(\Gamma \cap \mathrm{Z}(\mathrm{p}))\right]=\mathrm{c}_{\Gamma} \mathrm{D}^{(\mathrm{n}-1) / 2}
$$

Average Topology of Definable Jypersurfaces on Algebraic Sets

Theorem (Basu-Lerario-N (2019a))
Let $\Gamma \subset \mathbb{R} \mathbb{P}^{n}$ be a regular, compact semi-analytic hypersurface, and let p be a random Kostlan polynomial of degree D . Then there exists a constant c_{Γ} such that for every $0 \leqslant k \leqslant n-2$, for every $t>0$

$$
\mathbb{E}\left[\mathrm{b}_{\mathrm{k}}(\Gamma \cap \mathrm{Z}(\mathrm{p}))\right]=\mathrm{c}_{\Gamma} \mathrm{D}^{(\mathrm{n}-1) / 2}
$$

Interpretation
Pathologies exist, but for most polynomials, a Bezout-type bound holds.

Toward O-minimal polynomial Partitioning?

- While our initial result is bad news for o-minimal polynomial partitioning, the average result gives some hope

Toward O-minimal Polynomial Partitioning?

- While our initial result is bad news for o-minimal polynomial partitioning, the average result gives some hope
- Specifically, for a definable hypersurface γ

$$
\mathbb{P}\left[b_{0}(\gamma \cap Z(p)) \geqslant D^{n-1}\right] \leqslant \frac{c_{\Gamma}}{D^{n-1 / 2}}
$$

Toward O-minimal Polynomial Partitioning?

- While our initial result is bad news for o-minimal polynomial partitioning, the average result gives some hope
- Specifically, for a definable hypersurface γ

$$
\mathbb{P}\left[b_{0}(\gamma \cap Z(p)) \geqslant D^{n-1}\right] \leqslant \frac{c_{\Gamma}}{D^{n-1 / 2}}
$$

Future Questions:

- Prove an o-minimal polynomial partitioning theorem using the probabilistic method
- Generalize average result to codimension $\geqslant 2$

Outline

Acknowledgements

Introduction

Topology of Arrangement of Random Polynomials

Zeros of Polynomials on Definable Hypersurfaces

Zeros of Polynomials on Definable Hypersurfaces - (mini version)

References

Generalize Semi-algebraic Geometry

> $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$

Generalize Semi-algebraic Geometry

- $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$
- The activation functions in neural networks are transcendental, so the concepts are not semi-algebraic

Generalize Semi-algebraic Geometry

- $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$
- The activation functions in neural networks are transcendental, so the concepts are not semi-algebraic
- O-minimal geometry is the geometry of definable sets

Generalize Semi-algebraic Geometry

- $\mathrm{Z}\left(\mathrm{y}-\mathrm{e}^{\mathrm{x}}\right)$ is isotopic to $\mathrm{Z}(\mathrm{y})$
- The activation functions in neural networks are transcendental, so the concepts are not semi-algebraic
- O-minimal geometry is the geometry of definable sets

Question
Given a definable hypersurface γ, and $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, bound $\mathrm{b}_{\mathrm{k}}(\gamma \cap \mathrm{Z}(\mathrm{P}))$ in terms of $\operatorname{deg}(\mathrm{P})$.

Our results

Theorem (Basu-Lerario-N 2019a)

Let $\left\{Z_{\mathrm{d}}\right\}_{\mathrm{d} \in \mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1}. There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{R} \mathbb{P}^{n}$, a disk $\mathrm{D} \subset \Gamma$, and a sequence $\left\{\mathrm{p}_{\mathrm{m}}\right\}_{\mathrm{m} \in \mathbb{N}}$ of homogeneous polynomials with $\operatorname{deg}\left(\mathfrak{p}_{\mathfrak{m}}\right)=\mathrm{d}_{\mathfrak{m}}$ such that the intersection $\mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \Gamma$ is stable and:

$$
\left(\mathrm{D}, \mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \mathrm{D}\right) \sim\left(\mathbb{R}^{\mathrm{n}-1}, \mathrm{Z}_{\mathrm{d}_{\mathrm{m}}}\right) \quad \text { for all } \mathrm{m} \in \mathbb{N} \text {. }
$$

Our results

Theorem (Basu-Lerario-N 2019a)

Let $\left\{Z_{d}\right\}_{d \in \mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1}. There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{R P}^{n}$, a disk $\mathrm{D} \subset \Gamma$, and a sequence $\left\{\mathrm{p}_{\mathrm{m}}\right\}_{\mathrm{m} \in \mathbb{N}}$ of homogeneous polynomials with $\operatorname{deg}\left(p_{m}\right)=d_{m}$ such that the intersection $\mathrm{Z}\left(\mathrm{p}_{\mathfrak{m}}\right) \cap \Gamma$ is stable and:

$$
\left(\mathrm{D}, \mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \mathrm{D}\right) \sim\left(\mathbb{R}^{\mathrm{n}-1}, \mathrm{Z}_{\mathrm{d}_{\mathrm{m}}}\right) \text { for all } \mathrm{m} \in \mathbb{N} .
$$

Interpretation
You can make the Betti numbers of the intersection of a definable hypersurface and an algebraic set arbitrarily large.

Average Topology of Definable Jypersurfaces on Algebraic Sets

Theorem (Basu-Lerario-N (2019a))
Let $\Gamma \subset \mathbb{R} \mathbb{P}^{n}$ be a regular, compact semi-analytic hypersurface, and let p be a random Kostlan polynomial of degree D . Then there exists a constant c_{Γ} such that for every $0 \leqslant k \leqslant n-2$, for every $t>0$

$$
\mathbb{E}\left[\mathrm{b}_{\mathrm{k}}(\Gamma \cap \mathrm{Z}(\mathrm{p}))\right]=\mathrm{c}_{\Gamma} \mathrm{D}^{(\mathrm{n}-1) / 2}
$$

Average Topology of Definable Jypersurfaces on Algebraic Sets

Theorem (Basu-Lerario-N (2019a))
Let $\Gamma \subset \mathbb{R} \mathbb{P}^{n}$ be a regular, compact semi-analytic hypersurface, and let p be a random Kostlan polynomial of degree D . Then there exists a constant c_{Γ} such that for every $0 \leqslant k \leqslant n-2$, for every $t>0$

$$
\mathbb{E}\left[\mathrm{b}_{\mathrm{k}}(\Gamma \cap \mathrm{Z}(\mathrm{p}))\right]=\mathrm{c}_{\Gamma} \mathrm{D}^{(\mathrm{n}-1) / 2}
$$

Interpretation
Pathologies exist, but for most polynomials, a Bezout-type bound holds.

Future Work

- Prove an o-minimal polynomial partitioning theorem using the probabilistic method

Future LDork

- Prove an o-minimal polynomial partitioning theorem using the probabilistic method

- Generalize average result to codimension $\geqslant 2$

Outline

Acknowledgements

Introduction

Topology of Arrangement of Random Polynomials

Zeros of Polynomials on Definable Hypersurfaces

Zeros of Polynomials on Definable Hypersurfaces - (mini version)

References

References

P. K. Agarwal and M. Sharir. Arrangements and their applications. In Handbook of computational geometry, pages 49-119. Elsevier, 2000.
S. Barone and S. Basu. On a real analog of bezout inequality and the number of connected components of sign conditions. Proceedings of the London Mathematical Society, 112(1):115-145, 2016.
A. I. Barvinok. On the betti numbers of semialgebraic sets defined by few quadratic inequalities. 1997.
S. Basu. The combinatorial and topological complexity of a single cell. Discrete \& Computational Geometry, 29(1):41-59, 2002.
S. Basu. Different bounds on the different betti numbers of semi-algebraic sets. Discrete and Computational Geometry, 30(1):65-85, 2003.
S. Basu and O. E. Raz. An o-minimal szemerédi-trotter theorem. The Quarterly Journal of Mathematics, 69(1):223-239, 2017.
S. Basu, A. Lerario, and A. Natarajan. Zeroes of polynomials on definable hypersurfaces: pathologies exist, but they are rare. The Quarterly Journal of Mathematics, 70(4):1397-1409, 10 2019a. ISSN 0033-5606. doi: 10.1093/qmath/haz022. URL https://doi.org/10.1093/qmath/haz022.
S. Basu, A. Lerario, and A. Natarajan. Betti numbers of random hypersurface arrangements. arXiv preprint arXiv:1911.13256, 2019b.
I. Briquel and P. Bürgisser. The real tau-conjecture is true on average. arXiv preprint arXiv:1806.00417, 2018.
E. Calabi. Linear systems of real quadratic forms. Proceedings of the American Mathematical Society, 15(5):844-846, 1964.
A. Chernikov and S. Starchenko. Regularity lemma for distal structures. arXiv preprint arXiv:1507.01482, 2015.
J. Gwoździewicz, K. Kurdyka, and A. Parusiński. On the number of solutions of an algebraic equation on the curve $y=e^{x}+\sin x, x>0$, and a consequence for o-minimal structures. Proceedings of the American Mathematical Society, 127(4):1057-1064, 1999.
P. Koiran. Shallow circuits with high-powered inputs. arXiv preprint arXiv:1004.4960, 2010.
J. Milnor. On the betti numbers of real varieties. Proceedings of the American Mathematical Society, 15(2):275-280, 1964.
O. Oleinik and I. Petrovsky. On the topology of real algebraic hypersurfaces. Izv. Acad. Nauk SSSR, 13: 389-402, 1949.
J. Solymosi and T. Tao. An incidence theorem in higher dimensions. Discrete \& Computational Geometry, 48(2):255-280, 2012.
R. Thom. Sur l'homologie des variétés algébriques réelles. Differential and combinatorial topology, pages 255-265, 1965.
A. C.-C. Yao. Decision tree complexity and betti numbers. Journal of Computer and System Sciences, 55(1):36-43, 1997.

