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Real Algebraic Geometry
I Algebraic Set: The locus of common zeros of {P1, . . . ,Ps},
Pi ∈ R[X1, . . . ,Xn], i.e.

Z(P1, . . . ,Ps) := {x ∈ Rn |P1(x) = . . . = Ps(x) = 0}

Z(x2 + y2 − 1) Z(y− x2)

I Semialgebraic set: A set S ⊆ Rn that is a �nite Boolean
combination of sets of the form

{x ∈ Rn |P ∈ R[X1, . . . ,Xn],P(x) > 0}

{−(x2 + y2 − 1) > 0} {y > x} ∧ {x > y}
{
x2 + y2 6 2

}
∧ ({y− x > 4} ∨¬{x− y 6 4})
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Worst-case vs Average-case

I Worst-case results are often overly pessimistic and unrealistic

I Example of a worst-case theorem: fundamental theorem of

algebra says a univariate real polynomial of degree d has at
most d real roots

Question
What is the average-case, and what does it even mean?
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Distribution on Space of Polynomials

� ... in the absence of any precise knowledge... one assumes a reasonable

probability distribution ...� - Jean Ginibre

I There is a Gaussian measure on R[X0, . . . ,Xn](d) called
Edelman-Kostlan measure

I P ∼ KOS(n,d) if

P(X0, . . . ,Xn) =
∑

α=(α0,...,αn)∑n
i=0αi=d

ξαx
α0
0 . . . xαnn ,

where ξα ∼ N
(
0, d!
α0!...αn!

)
are independent

I This is a natural measure
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Orthogonal Invariance of Kostlan Measure
I The distribution is orthogonally-invariant: for any
L ∈ O(n+ 1,R),

P(X) ≡dist. P(LX)

I Proof in degree 2, two variable case:

I P(X0,X1) = N (0, 1)X2
0
+N (0, 2)X0X1 +N (0, 1)X2

1

I When
(
Y0
Y1

)
= rot(θ)

(
X0

X1

)
,

P(Y0, Y1) = N (0, 1) (X0 cos θ− X1 sin θ)
2

+N (0, 2) (X0 cos θ− X1 sin θ)(X0 sin θ+ X1 cos θ)

+N (0, 1) (X0 sin θ+ X1 cos θ)
2

= N (0, 1)X2
0
+N (0, 2)X0X1 +N (0, 1)X2

1

I No points or directions are preferred in projective space
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Some results on random polynomials

I Expected number of real zeros of univariate Kostlan P is
exactly

√
deg(P)

I Necessary condition for VPC 6= VNPC:

I Koiran [2010] real τ-conjecture: number of real zeros of

F =
∑m
i=1

∏k
j=1

fij, where each fij has at most t monomials,

is O((m+ k+ t)O(1)); implies VPC 6= VNPC

I Briquel and Bürgisser [2018] show that with standard Gaussian
coe�cients, E [real zeros of F] = O(mk2t)
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Betti Numbers
I Betti numbers: The kth Betti number bk(X) of a topological

manifold X represents the rank of the kth singular
(co)homology group of X

I Intuitively, bk(X) denotes the number of k-dimensional holes
in X

I b0(X) = #number of connected components

I b1(X) = #one-dimensional or circular holes

I b2(X) = #two-dimensional voids or cavities, etc.
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Betti Numbers - Examples

Object b0 b1 b2 bi>3

1 0 0 0

5 0 0 0

1 1 0 0

1 0 0 0

1 0 1 0

1 2 1 0
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Why Betti Numbers?

I Betti numbers are invariant under continuous deformations
(di�eomorphism ⊆ homeomorphism ⊆ homotopy equivalence)

I They o�er a measure of complexity � e.g. height of algebraic
computation tree for membership in semialgebraic set is lower
bounded in terms of the Betti numbers (Yao 1997)

I In applications in incidence geometry, computational geometry,
etc., especially for polynomial partitioning, bounds on Betti
numbers of semi-algebraic sets are very important
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Complexity of Arrangements

I Arrangement - �nite collection of geometric objects

I Analysis of arrangements of algebraic sets, i.e.
⋃s
i=1 Z(Pi) -

important research area with applications in motion planning,
etc. (Agarwal-Sharir 2000)

I Knowledge of the Betti numbers of arrangements, has been
used for understanding �combinatorial complexity� (Basu 2002)



Complexity of Arrangements

I Arrangement - �nite collection of geometric objects

I Analysis of arrangements of algebraic sets, i.e.
⋃s
i=1 Z(Pi) -

important research area with applications in motion planning,
etc. (Agarwal-Sharir 2000)

I Knowledge of the Betti numbers of arrangements, has been
used for understanding �combinatorial complexity� (Basu 2002)



Complexity of Arrangements

I Arrangement - �nite collection of geometric objects

I Analysis of arrangements of algebraic sets, i.e.
⋃s
i=1 Z(Pi) -

important research area with applications in motion planning,
etc. (Agarwal-Sharir 2000)

I Knowledge of the Betti numbers of arrangements, has been
used for understanding �combinatorial complexity� (Basu 2002)



Previous work on Arrangements
I Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965),

Milnor (1964)) - P1, . . . ,Ps ∈ R[X1, . . . ,Xn], max degree d,
then ∑

j>0

bj

(
s⋃
i=1

Z(Pi)

)
= O(sndn)

I Bounds on individual Betti numbers (Basu 2003)

bj

(
s⋃
i=1

Z(Pi)

)
= sn−jO(dn)

Question
What are the expected Betti numbers of an arrangement of

random polynomials?
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Expected Topology of Random Arrangements

Theorem (Basu-Lerario-N 2019b)

Let P1, . . . ,Ps ∈ R[X0, . . . ,Xn] be homogeneous Kostlan forms,

each of degree at most d. Let Γi ⊂ RPn be the zero set of Pi, and

de�ne Γ =
⋃s
i=1 Γi. Then

E [b0(RPn \ Γ)] = 2snd
n/2 +O

(
sn−1d

(n−1)/2
)
.

Also, for 0 < i 6 n− 1

E [bi(RPn \ Γ)] = O
(
sn−id

(n−1)/2
)
.

Interpretation

Worst-case bound on b0 is
(
s
n

)
O(dn), while expectation is

equal to 2sndn/2.
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Betti Numbers of Sets Defined by Quadrics

I Growth of Betti numbers of s.a. sets de�ned by quadratic
polynomials often shows behaviour di�erent to general
semi-algebraic sets

I S ⊆ Rn de�ned by {Pi > 0}i∈[s], deg(Pi) 6 2 (Barvinok
1997) ∑

k>0

bk(S) 6 n
O(s)

Question
What is the expected Betti number of a union of random

quadrics?
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b0 of Quadrics’ Arrangement

Theorem (Basu-Lerario-N 2019b)

Let P1, . . . ,Ps ∈ R[X0, . . . ,Xn] be homogeneous Kostlan quadrics.

Let Γi ⊂ RPn be the zero set of Pi, and de�ne Γ =
⋃s
i=1 Γi. Then

lim
s→∞ E [b0(Γ)]

s
= 0.

Interpretation

Our general theorem suggests E [b0(Γ)] = O(s). For quadrics,
we prove E [b0(Γ)] = o(s).
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Quadrics Arrangement - Proof

I Let Sym(n+ 1,R) be the vector space of (n+ 1)× (n+ 1)
real symmetric matrices; we have

Sym(n+ 1,R) ∼= R[x0, . . . , xn](2), Q 7→ 〈x,Qx〉.

I RPN = P(Sym(n+ 1,R)) - projectivization of the space of
symmetric matrices (here N =

(
n+2

2

)
− 1)

I Turns out sampling a Kostlan quadric is equivalent to sampling
uniformly at random from SN
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Our sampling process is equivalent to a random graph:
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Obstacle Random Graph - Properties
I Good cone: for q ∈ SN

gq(Pn) =
{
x ∈ SN | `(q, x) ∩ Pn = ∅
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I Probability random variables are not independent
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Obstacle Random Graph

I For each pair of vertices u, v with an edge, the corresponding
zero sets of the polynomials intersect

I Model denoted G(N,Pn, s)

Question
What is the average number of connected components in the

above random graph?
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Average Connected Components

Theorem (Basu-Lerario-N 2019b)

The expected number of connected component of G(N,Pn, s)
satis�es:

lim
s→∞ E [b0(G(N,Pn, s))]

s
6

vol (Pn)

vol
(
RPN

) .

Interpretation

Considering vol(Pn)

vol(RPN)
to be �xed, we have that the expected

number of connected components is o(s).
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I Using coupon-collector type argument, bound number of

samples required to collect all Bi. �
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I We prove a Ramsey theoretic result - we prove large cliques
will exist in the graph w.h.p.
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I There are 2s sign conditions on P1, . . . ,Ps
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I What is the probability of a sign condition on P1, . . . ,Ps to be
realizable?

I What are the expected Betti numbers of sign conditions?
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Generalize Semi-algebraic Geometry

I Z(y− ex) is isotopic to Z(y)

I The activation functions in neural networks are transcendental,
so the concepts are not semi-algebraic

I Is there a general theory?

Question
�...investigate classes of sets with the tame topological

properties of semialgebraic sets...� - Grothendieck (Esquisse

d'un Programme, 1997)
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O-Minimal Structures
O-minimal structure S on R: S = (Sn)n∈N, Sn ⊆ 2R

n
, satisfying

I All algebraic subsets of Rn are in Sn

I Sn is closed under complementation, �nite unions &
intersections

I If A ∈ Sn, B ∈ Sm, then A× B ∈ Sn+m

I If Π : Rn+1 → Rn is the projection on the �rst n coordinates,
A ∈ Sn+1, then Π(A) ∈ Sn

9 Elements of S1 are precisely �nite unions of points and
intervals
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Why O-Minimal Structures?

I Semi-algebraic sets in Rn form an o-minimal structure

I Other examples - R with exp function (e.g. x3 + ex+2y 6 0),
restricted analytic functions (e.g. sin x2 = 0 on [−1, 1]), etc.

I De�nable sets have a `tame topology'
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Betti Numbers of Definable Sets
I Real Analogue of Bezout theorem (Barone-Basu 2016): Given

deg(Q)� deg(P), dim(Z(Q)) = k, then

b0(Z(Q) ∩ Z(P)) 6 Ok(deg(P)k)

I Such topological bounds are important in incidence questions
(e.g. Solymosi-Tao 2012)

I Incidences involving de�nable sets are actively being studied
(Basu and Raz [2017], Chernikov and Starchenko [2015])

Question
Given a de�nable hypersurface γ, and a degree D polynomial

P ∈ R[X1, . . . ,Xn], bound bk(γ ∩ Z(P)).
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I Di�eomorphism: Bijective function ψ that is bi-di�erentiable

I Ambient di�eotopy: For manifolds a ⊆ A,b ⊆ B, we write

(A,a) ∼ (B,b)

if there exists a di�eomorphism ψ : A→ B, and ψ(a) = b
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Definable Hypersurfaces ∩ Varieties

Theorem (Basu-Lerario-N 2019a)

Let {Zd}d∈N be a sequence of smooth, compact hypersurfaces in

Rn−1. There exists a regular, compact, semianalytic hypersurface

Γ ⊂ RPn, a disk D ⊂ Γ , and a sequence {pm}m∈N of homogeneous

polynomials with deg(pm) = dm such that the intersection

Z(pm) ∩ Γ is stable and:

(D,Z(pm) ∩D) ∼ (Rn−1,Zdm) for all m ∈ N.

Interpretation

You can make the Betti numbers of the intersection of a

de�nable hypersurface and an algebraic set arbitrarily large.
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Definable Hypersurfaces ∩ Algebraic Varieties

I Generalizes a result of Gwo¹dziewicz et al. (1999)

I For algebraic hypersurface γ,

b0(γ ∩ Z(P)) . deg(P)n−1

I Our results shows that such a bound is not possible if we have
a de�nable hypersurface

Question
How `common' is the pathological case?
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Average Topology of Definable Hypersurfaces
on Algebraic Sets

Theorem (Basu-Lerario-N (2019a))

Let Γ ⊂ RPn be a regular, compact semi-analytic hypersurface, and

let p be a random Kostlan polynomial of degree D. Then there

exists a constant cΓ such that for every 0 6 k 6 n− 2, for every
t > 0

E [bk(Γ ∩ Z(p))] = cΓD
(n−1)/2.

Interpretation

Pathologies exist, but for most polynomials, a Bezout-type

bound holds.
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Toward O-minimal Polynomial Partitioning?

I While our initial result is bad news for o-minimal polynomial
partitioning, the average result gives some hope

I Speci�cally, for a de�nable hypersurface γ

P
[
b0(γ ∩ Z(p)) > Dn−1

]
6

cΓ

Dn−1/2

Future Questions:

I Prove an o-minimal polynomial partitioning theorem using the
probabilistic method

I Generalize average result to codimension > 2
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bound bk(γ ∩ Z(P)) in terms of deg(P).
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Our results

Theorem (Basu-Lerario-N 2019a)

Let {Zd}d∈N be a sequence of smooth, compact hypersurfaces in

Rn−1. There exists a regular, compact, semianalytic hypersurface

Γ ⊂ RPn, a disk D ⊂ Γ , and a sequence {pm}m∈N of homogeneous

polynomials with deg(pm) = dm such that the intersection

Z(pm) ∩ Γ is stable and:

(D,Z(pm) ∩D) ∼ (Rn−1,Zdm) for all m ∈ N.

Interpretation

You can make the Betti numbers of the intersection of a

de�nable hypersurface and an algebraic set arbitrarily large.
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Average Topology of Definable Hypersurfaces
on Algebraic Sets

Theorem (Basu-Lerario-N (2019a))

Let Γ ⊂ RPn be a regular, compact semi-analytic hypersurface, and

let p be a random Kostlan polynomial of degree D. Then there

exists a constant cΓ such that for every 0 6 k 6 n− 2, for every
t > 0

E [bk(Γ ∩ Z(p))] = cΓD
(n−1)/2.

Interpretation

Pathologies exist, but for most polynomials, a Bezout-type

bound holds.
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Future Work

I Prove an o-minimal polynomial partitioning theorem using the
probabilistic method

candidates for

partitioning

polynomials

with patholog-

ical intersec-

tion

Suitable Partitioning Polynomial

we show, µ (bad polynomials) < ε.
hopefully µ (partitioning candidates) > ε

I Generalize average result to codimension > 2
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