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Today’s Presentation

I I do research in algebraic geometry/topology

I Algebraic geometry deals with non-linear objects, i.e.
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I Non-linear methods are increasingly being used in data
science/mining, e.g., �nding missing links in palaeontology

Question

What is algebraic geometry? What do we mean by non-linear?
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Algebraic Geometry

I Algebraic Geometry studies zeros of polymonials:

given polynomial f(X), �nd Z(f) := {X such that f(X) = 0}

I Examples:

Polynomial Zeros

f(x) = x− 7 Z(f) = {7}

f(x) = x2 − 3x+ 2

= (x− 1)(x− 2)
Z(f) = {1, 2}

f(x) = ax2 + bx+ c Z(f) = −b±
√
b2−4ac
2a
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f1(X) = 0
...

fm(X) = 0
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e.g. f(x) = 7x, g(x,y) = 15x+ 7y

I Solving Φ =

{
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when the fi are linear is done using

Gaussian elimination

I Today we are going to learn about Gröbner Bases, which
allows us to solve Φ for non-linear fi, i.e. polynomials



‘Non-linear’ Algebra

I f(X) is linear if f(α · X) = α · f(X)
e.g. f(x) = 7x, g(x,y) = 15x+ 7y

I Solving Φ =

{
f1(X)=0

...
fm(X)=0

when the fi are linear is done using

Gaussian elimination

I Today we are going to learn about Gröbner Bases, which
allows us to solve Φ for non-linear fi, i.e. polynomials



‘Non-linear’ Algebra

I f(X) is linear if f(α · X) = α · f(X)
e.g. f(x) = 7x, g(x,y) = 15x+ 7y

I Solving Φ =

{
f1(X)=0

...
fm(X)=0

when the fi are linear is done using

Gaussian elimination

I Today we are going to learn about Gröbner Bases, which
allows us to solve Φ for non-linear fi, i.e. polynomials



‘Non-linear’ Algebra

I f(X) is linear if f(α · X) = α · f(X)
e.g. f(x) = 7x, g(x,y) = 15x+ 7y

I Solving Φ =

{
f1(X)=0

...
fm(X)=0

when the fi are linear is done using

Gaussian elimination

I Today we are going to learn about Gröbner Bases, which
allows us to solve Φ for non-linear fi, i.e. polynomials



Outline

Introduction

Gröbner Bases

Applications of Gröbner Bases

Conclusion



Solving System of Linear Equations
Two equations, two variables:

7×
(

3x + y = −1

)
�

3×
(

7x + 11y = 15

)

0 + −26y = −52

substitute y = 2 into either equation to get x = −1
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Gaussian Elimination
I In general, given a system of n linear equations in n-variables,

eliminate leading term for every pair of linear equations

I e.g. Given f = 4x+ 7y− 23z, g = 7x− 23y eliminate x term

by computing 7f− 4g

I f is multiplied by the leading co-e�cient of g, i.e. 7f

I g is multiplied by the leading co-e�cient of f, i.e. 4g

I Continue until you reach an equation with just one variable

I Solve system with back substitution

Question

Can this idea be applied to a system of polynomials?
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Solving System of Non-linear Equations
Two polynomials:

x×
(

x2y3 − 4 = 0

)
�

y×
(

x3y2 − 2 = 0

)

0 + 4x− 2y = 0
=⇒ y = 2x

1. put y = 2x in �rst equation to get 4x3 = 4, thus x = 1

2. put x = 1 in `y = 2x' to get y = 2
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Generalized Gaussian Elimination
I Modi�ed Gaussian elimination works in the non-linear case!

I For f, g, polynomial obtained after eliminating leading terms
of f and g is called S-polynomial of f and g, denoted S(f,g)

I f = x2z− 5x2y+ 12x+ 23, g = xy+ 2

I Leading term of f is x2z, leading term of g is xy

I S(f,g) = yf− xzg, eliminates leading terms of both f and g

I Compute S-polynomials of every pair of polynomials until
system can be solved

I The set of all S-polynomials is called a Gröbner basis
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system can be solved

I The set of all S-polynomials is called a Gröbner basis



Buchberger’s Algorithm for Gröbner Basis

Algorithm 1 Compute Gröbner basis of polynomial system

Require: Set of polynomials S = {f1, . . . , fm}

1: function Gröbner-Basis(S)
2: do

3: S ′ ← ∅
4: for each f,g ∈ S do

5: h ← S(f,g)
6: S ′ ← S ′ ∪ {h}

7: S ← S ∪ S ′
8: while S is not solvable

9: return S
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Application - Polynomial System Solvability
I S is not solvable ⇐⇒ Gröbner-Basis(S) contains a constant

polynomial

Polynomial Gröbner Basis Zeros

unsolvable system

f1(x,y)= y− x+ 2

f2(x,y)= y− x− 1 Z(f1)

Z(f2)

solvable system

f1(x,y)= y− x+ 2

f2(x,y)= y+ x

Z(f1)

Z(f2)
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Summary
I Gröbner Bases are a very powerful notion with

applications in (a) solving Diophantine equations
(b) automated geometry theorem proving (c)
signal and image processing (d) robotics (e)
Sudoku puzzles (f) extrapolating �missing links� in
palaeontology, TO BE CONTINUED

I Gives critical insight into ANY system of polynomials

I Lots of software to compute Gröbner bases -
Macaulay2, Sage, Singular, CoCoA, etc.
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