Communication-Efficient Distributed Learning of Discrete Distributions

Abhiram Natarajan (Purdue)

Joint work with Ilias Diakonikolas (USC), Elena Grigorescu (Purdue), Jerry Li (MIT), Krzysztof Onak (IBM), and Ludwig Schmidt (MIT)

Distribution family \mathcal{D} over domain $\{1, \ldots, d\}$

Distribution family \mathcal{D} over domain $\{1, \ldots, d\}$

unknown P • (target)

▶ For small error ε , we want

 $\mathbb{E}\left[\operatorname{dist}(\mathsf{P},\hat{\mathsf{P}})
ight]\leqslant arepsilon \qquad ext{dist} ext{ is } \ell_1 ext{ or } \ell_2 ext{ distance}$

For small error ε , we want

 $\mathbb{E}\left[\operatorname{dist}(\mathsf{P},\hat{\mathsf{P}})\right]\leqslant \epsilon$ dist is ℓ_1 or ℓ_2 distance

Fundamental learning problem with many applications

For small error ε , we want

 $\mathbb{E}\left[\text{dist}(\mathsf{P},\hat{\mathsf{P}})\right]\leqslant\epsilon\quad\quad\text{dist is }\ell_1\text{ or }\ell_2\text{ distance}$

Fundamental learning problem with many applications

Sample Size vs Runtime vs Communication

Data is distributed amongst machines

Data is distributed amongst machines

Need communication-efficient distributed protocols

Data is distributed amongst machines

Need communication-efficient distributed protocols

Communication complexity - practical and fundamental

 \blacktriangleright n is a sufficient sample size for learning family ${\mathcal D}$

 \blacktriangleright n is a sufficient sample size for learning family \mathcal{D}

 There exists non-distributed algorithm to learn D using n samples

 \blacktriangleright n is a sufficient sample size for learning family \mathcal{D}

There exists non-distributed algorithm to learn D using n samples

From unknown $P \in D$, we have s samples each on $\frac{n}{s}$ machines

 \blacktriangleright n is a sufficient sample size for learning family \mathcal{D}

- There exists non-distributed algorithm to learn D using n samples
- From unknown $P \in D$, we have s samples each on $\frac{n}{s}$ machines

How many bits are in transcript of protocol?

 \blacktriangleright n is a sufficient sample size for learning family \mathcal{D}

 There exists non-distributed algorithm to learn D using n samples

From unknown $P \in D$, we have s samples each on $\frac{n}{s}$ machines

How many bits are in transcript of protocol?

Fact (Baseline Protocol) There exists protocol with $O(n \log d)$ bits of communication.

High-Level Summary of Results

In the absence of structural assumptions on the distribution, the baseline protocol is optimal

High-Level Summary of Results

In the absence of structural assumptions on the distribution, the baseline protocol is optimal

 When distribution is structured (k-histograms, monotone, etc.), structure can be exploited for improvement

Unstructured Distributions in l₁

► $\Theta\left(\frac{d}{\varepsilon^2}\right)$ samples necessary and sufficient for learning any distribution over $\{1, \ldots, d\}$ in ℓ_1 distance

Unstructured Distributions in ℓ_1

Θ (^d/_{ε²}) samples necessary and sufficient for learning any distribution over {1, ..., d} in ℓ₁ distance

► Baseline protocol uses $O\left(\frac{d}{\varepsilon^2} \log d\right)$ bits of communication

Unstructured Distributions in ℓ_1

Θ (^d/_{ε²}) samples necessary and sufficient for learning any distribution over {1, ..., d} in ℓ₁ distance

▶ Baseline protocol uses $O\left(\frac{d}{s^2} \log d\right)$ bits of communication

Theorem (Communication Lower Bound) $\Omega\left(\frac{d}{\epsilon^2} \log d\right)$ bits is the best possible protocol when there is one sample per machine

Lower Bound Proof Ideas

► Construct hard to learn family of distributions on {1, ..., d}:

$$\mathbb{P}(2i-1) = \frac{1+10\delta_i\varepsilon}{d}$$
 $\mathbb{P}(2i) = \frac{1-10\delta_i\varepsilon}{d}$

 δ_i uniform on $\{-1, 1\}$

Lower Bound Proof Ideas

▶ Construct *hard to learn* family of distributions on {1, ..., d}:

$$\mathbb{P}(2i-1) = \frac{1+10\delta_i\varepsilon}{d} \qquad \mathbb{P}(2i) = \frac{1-10\delta_i\varepsilon}{d}$$

 δ_i uniform on $\{-1,1\}$

Using information complexity machinery, we show that large number of bits is required to get information about all coins

k-Histogram Distributions

▶ Piecewise-constant over some set of k intervals over {1, ..., d}

k-Histogram Distributions

▶ Piecewise-constant over some set of k intervals over {1, ..., d}

 Motivation - histogram approximations exist for large class of distributions (log-concave, unimodal, etc.)

k-Histogram Distributions

▶ Piecewise-constant over some set of k intervals over {1, ..., d}

 Motivation - histogram approximations exist for large class of distributions (log-concave, unimodal, etc.)

 Need learning algorithm that is robust to model mis-specification

Learning K-Histograms in l2

▶ $\Theta\left(\frac{1}{\varepsilon^2}\right)$ samples necessary and sufficient to learn k-Histograms in ℓ_2

Learning k-Histograms in l_2

▶ $\Theta\left(\frac{1}{\varepsilon^2}\right)$ samples necessary and sufficient to learn k-Histograms in ℓ_2

When partition known, reduces to unstructured case

Learning k-Histograms in l_2

► $\Theta\left(\frac{1}{\epsilon^2}\right)$ samples necessary and sufficient to learn k-Histograms in ℓ_2

When partition known, reduces to unstructured case

▶ When partition unknown, baseline protocol $\overline{O(\frac{1}{s^2} \log d)}$ bits

Learning k-Histograms in l_2

→ Θ (¹/_{ε²}) samples necessary and sufficient to learn k-Histograms in ℓ₂

When partition known, reduces to unstructured case

▶ When partition unknown, baseline protocol $O(\frac{1}{c^2} \log d)$ bits

Theorem (Communication Upper bound) There exists robust protocol with $\tilde{O}(\text{mk}\log\frac{1}{\epsilon}\log d)$ bits of communication, where m is number of machines

Machine 1

Samples: \vec{X}_m

Machine 1

Samples: X_m

Machine 1

$$\frac{\mathsf{Samples}}{\vec{\mathsf{X}}_2}$$

Machine 2

 \vec{X}_m

Other Results

Additionally, communication bounds in multiple regimes for:

 \blacktriangleright Unstructured distributions in ℓ_2

▶ k-Histograms in l_1

► Monotone distributions in ℓ₁

Other Results

Additionally, communication bounds in multiple regimes for:

Vistructured distributions in ℓ_2

▶ k-Histograms in l_1

► Monotone distributions in ℓ₁

All structured learners are robust to model mis-specification

 We provide first communication bounds for a large class of discrete distributions

 We provide first communication bounds for a large class of discrete distributions

Some open problems:

Tighten upper and lower bounds in some regimes

 We provide first communication bounds for a large class of discrete distributions

Some open problems:

Tighten upper and lower bounds in some regimes

Other classes of distributions - densities, etc.

 We provide first communication bounds for a large class of discrete distributions

Some open problems:

Tighten upper and lower bounds in some regimes

Other classes of distributions - densities, etc.

Multivariate distribution estimation

