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» For small error ¢, we want

E [dist(P, 13)] < dist is £; or £, distance

» Fundamental learning problem with many applications

Sample Size vs Runtime vs Communication
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Distributed J)ensify Estimation

\» Data is distributed amongst machines
» Need communication-efficient distributed protocols

» Communication complexity - practical and fundamental
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» n is a sufficient sample size for learning family D

» There exists non-distributed algorithm to learn D using n
samples

» From unknown P € D, we have s samples each on %= machines

» How many bits are in transcript of protocol?

Fact (Baseline Protocol)

There exists protocol with O(nlog d) bits of communication.
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}Cigh—L@vd Summary of Results

\» In the absence of structural assumptions on the distribution,
the baseline protocol is optimal

» When distribution is structured (k-histograms, monotone,
etc.), structure can be exploited for improvement
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\

» O (e%) samples necessary and sufficient for learning any
distribution over {1, ..., d} in £; distance

» Baseline protocol uses O (E% log d) bits of communication

Theorem (Communication Lower Bound)

Q (& logd) bits is the best possible protocol when there is
one sample per machine
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» Construct hard to learn family of distributions on {1, ..., d}:
1+ 100; 1 —100;
RPpi g — e 0 d061£ P(2i) = 7(10615,

d; uniform on {—1, 1}

1

d

1ol s a0 d 3 do d_aa
Dm0 e e S ot
biased biased biased
coin 1 coin 2 coin d/2

» Using information complexity machinery, we show that large
number of bits is required to get information about all coins
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k—}éisfogmm Distributions

» Piecewise-constant over some set of k intervals over {1, ..., d}

Interval 1  Interval 2

» Motivation - histogram approximations exist for large class of
distributions (log-concave, unimodal, etc.)

» Need learning algorithm that is robust to model
mis-specification
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Leaming k—?ﬁisfogmms m s

> O (é) samples necessary and sufficient to learn k-Histograms
\ in €2

» When partition known, reduces to unstructured case

» When partition unknown, baseline protocol O(é log d) bits

Theorem (Communication Upper bound)

There exists robust protocol with O (mk log % log d) bits of
communication, where m is number of machines
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Other Results

» Additionally, communication bounds in multiple regimes for:

» Unstructured distributions in £
» k-Histograms in {;

» Monotone distributions in {4

» All structured learners are robust to model mis-specification
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Conclusion & Oyen problems

» We provide first communication bounds for a large class of
\ discrete distributions

» Some open problems:

» Tighten upper and lower bounds in some regimes
» Other classes of distributions - densities, etc.

» Multivariate distribution estimation
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