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» Sometimes you get intuition by computing small examples, e.g.
n = 2,34

» Grobner bases are well-suited to both of the above!

» Grdbner bases give theoretical insight as well as are the key
tool in effective methods
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. » Obtaining a Grobner basis can be tremendously expensive -
EXPSPACE-complete (Mayr and Meyer [1982])

» Hard to get even simple cases to finish, e.g. 3 x 3 determinant
orbit closure, tensor rank of 3 x 3 multiplication

» Grobner bases tend to obscure symmetry!
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» There are Grobner basis methods to obtain Algebraic de Rham
Cohomology (Oaku and Takayama [1999, 2001])

\» Requires computing Grdbner bases of D-ideals (ideals in the
Weyl algebra):

Wi = C [{Xi’ "’%}ie[n]] /<{£<. Kl 33— l}ie[n1>

» We couldn’t even obtain cohomology of 3 x 3 determinant
hypersurface by hand, or on Macaulay?2

Question

Develop a Grébner basis theory which takes advantage if
variety corresponding to ideal has large symmetry group, or is
‘determinantal’
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» If an algebra A is a then:
\ > A=FK /5 ang

» there is a monomial ideal £ C F[X] such that monomials not in
Y form an F-linear basis for A; such monomials are called

» If Aisan , the product of two standard monomials can be
into a linear combinaton of ‘smaller’ standard
monomials

» ASLs arise as coordinate rings of algebraic varieties, e.g.
Grassmanians, determinantal varieties, flag varieties, Schubert
varieties
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> Ekample of Hodge algebra - algebra of

—FX11.X12. X201, X22, Y
eg A= (X1,1, X1,2, X2,1, X2.2 ]/(X1,2X2,1 —X11X224Y)
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» The above generalizes -
» poly ring with of 1 x m matrix
2 between minors
» gives ASL structure to the co-ordinate ring of n x m matrices

> correspond to

» Advantage - smaller expressions for ‘determinant-like’
polynomials; bideterminants are reflect symmetries coming
from the action (representation theory) of GL;,
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» Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis

» Can we have a theory of Grobner bases directly in p-ASLs?

» Trivially, any ASL A = F[X] /I so for an any ideal I C A, we

can look Grébner bases of the ideal 1+ J C FIX] — this
obscures symmetries

Question

Can we build a theory of Grébner bases ‘native’ to p-ASLs, i.e.
Grobner theory without referencing the ideal ] 7
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» Basis of p-ASL A = FX] /] consists only of standard

\ monomials (monomials outside X), not all monomials in X

» Product of standard monomials not necessarily standard,
might require straightening

» How do you define term order?
» How would you define division of monomials?

» What plays the role of monomial ideals?
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Term Order & Division

> A order on a p-ASL A is a total order < on
standard monomlals in A such that

\ » 1<m
» If a <band c=<d, and ac,bd # 0, then

LM(ac) < LM(bd)

» When does standard monomial m divide m':
» ordinary division in the polynomial ring, or

» m divides m’ if there exists standard monomial f such that

LM(mf) =m’
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» Given p-ASL A, w.r.t. A is another
\ p-ASL Ay on the same variables, and the same standard
'~ monomials such that for standard monomials m, m’

no straightening
—
me(m) - @ (m’) = 0 or e (LT(mm”))
%/_/

leading term of straightening
where ¢ : A — Aqq is the identity

Proposition

Every p-ASL A admits two algebras of leading terms — A gen where
the product is never 0, and, A qisc where product is 0 unless mm’
is also a standard monomial.
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» Given p-ASL A, algebra of Ieadlng terms Ay¢, and an ideal
\ ICA, then if:

» For all f €1, there exists g € G such that 71 (LM(g)) divides
e (LM(f)), or

» {m(LM(g)) : g € G}) = {rmie (LM(f)):: f.€ I}) (standard
monomial ideals in Ay)
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Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we
have a Grobner basis theory (called bd-Grébner bases).
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> is a p-ASL Grobner basis for
\ any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r, the set of minors of size > r is a universal bd-Grébner
basis for its ideal.

Takeaway
1. Given all our machinery, the proof is one-line

2. In the ordinary case, universal Grébner basis are known
only for maximal minors and minors of size 2
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Future Work

» In upcoming work, we have already extended our Grébner basis
theory to mildly non-commutative algebras, including the Weyl
i algebra

» Get bd-Grobner bases of annihilating D-ideals

» Compute Weyl closure, b-functions, etc. using bd-Grobner
bases in the Weyl algebra

» See if we can develop a bipermanent Grobner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)
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