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Grobner Bases

» Is x3 divisible by x?> + x? EASY!

1
» Is polynomial f divisible by (hi, hy): does there exist (ki, ks)
such that h1kq; + hoks = 72 HARD!

» e.g. Is x3 divisible by (x% + x, x3 + 2x?)?
x3 = 2. (x® FA) g 0x?)

» The answer to the question above required cleverness
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Grobner Bases

> G.iven an idedl I — @15 . ., hn), a Gr yasis of I is
G—1{g1 . gm} such that

» checking if f € I can be done mechanically using G

» Grobner bases exist for all ideals, and there'is an algorithm to
find them!

» UNDERSTATEMENT: Grobner bases are very useful
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» CCT - classifying computational problems according to their
\  resource usage, and understanding the classification itself

» Called ‘quantitative epistemology’, CCT has revealed profound
insights into the mathematical universe, and has given P vs NP

» The algebraic version of P vs NP is VP vs VNP
> : minimum

T € N such that there is an r x v matrix M of affine linear
forms satisfying det(M) =P
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Com)oufafional Com)ole%ify waory (CCT)

» example:
\ X y 0
YAy L oxy—xJgeedet | 1€z +y+2 x
1 7 1

» Thusdc@¥ 2x + xz 4+ 2xy — 8 2) < 3

> rIX Just n xn
determinant with no minus signs, e.g. X1,1X22 + X1 2X21

» Conjecture: de(permy,) =n®®
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/Hgd)mic Comy(@%ify waory

» Another important question in algebraic CCT is complexity of
. matrix multiplication - currently O(n?371339)

» Usually have sets parameterized by n € Z, and seek
asymptotic information that is symbolic in n

» Sometimes you get intuition by computing small examples, e.g.
m— 2, 31

» Grobner bases are well-suited to both of the above: they give
theoretical insight as well as are the key tool in effective
methods
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Grobner Bases are not a panacea

. » Obtaining a Grobner basis can be tremendously expensive -
EXPSPACE-complete (Mayr and Meyer [1982])

» Hard to get even simple cases to finish, e.g. 3 x 3 determinant
orbit closure, tensor rank of 3 x 3 multiplication

» Grobner bases tend to obscure symmetry!
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/Hgd)mic de Rham Cohomo(ogy

>

\

There are Grobner basis methods to obtain Algebraic de Rham
Cohomology (Oaku and Takayama [1999, 2001])

One can obtain lower bounds on decision tree complexity by
obtaining Betti numbers of semi-algebraic sets

Requires computing Grobner bases of D-ideals (ideals in the
Weyl algebra):

W= C {{Xi' ai‘ }ie[n]] /<{aax‘ K ok aixi 3 1}i€[nl>
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/ngbmic de Rham Cohomology

» We aimed to compute the cohomology of tensor rank varieties,
orbit closure of the determinant, etc.

\
|

» We couldn’t even obtain cohomology of 3 x 3 determinant
hypersurface by hand, or on Macaulay2

» Reason for failure - Grobner basis methods in the Weyl algebra
obsure the determinantal nature of the D-ideals one has to
deal with

Question

Develop a Grébner basis theory which takes advantage if
variety corresponding to ideal has large symmetry group, or is
‘determinantal’
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» If an algebra A is a then:
\ > A=FK /5 ang

» there is a monomial ideal £ C F[X] such that monomials not in
Y form an F-linear basis for A; such monomials are called

» If Aisan , the product of two standard monomials can be
into a linear combinaton of ‘smaller’ standard
monomials

» ASLs arise as coordinate rings of algebraic varieties, e.g.
Grassmanians, determinantal varieties, flag varieties, Schubert
varieties
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Denoting
Xry,c1 - XT]..Ck
X (fr1.00 o icy e cp ) & deE .
i Xry,c1 g5 X1,Ci
The combinatorial datum below (b eau)
+]@ 0| | e c(P)
(p) (p)
i "Ap ; : “Ap
(2) : (2)
C g ¥
(1) (1)
|| Chy ]
defines the following product of minors (bideter )

P
CRe.C ) ::H(rgi) ..... T‘;\ii)

i=1
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Bideteyminants ()orocﬁucfs of minors)

> ) entries in rows of both
|\ tableaux are non-decreasing

> ~ product of any two minors in
F [{Xiri}ie[m] je[n}} can be expressed as an F-linear

combination of standard bideterminants

» Thus Standard bideterminants form an F-linear basis of
F [{Xi,j }te[m],je[n}}
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» Define

\ A = FIXi1, X172, X271, X22, Y] /<X1,2X2,1 X+ Y)
3
2 = (XigXo 1)

» Note: Xj2Xp1 is a non-standard bideterminant

[ESER, ewf

> X12Xo1 =REINH> — Y

» (A,X) - the algebra of - is an example of a
Hodge algebra

» As seen before, A = F[X; 1, X1.2, X21, X2,2]
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» This generalizes
» poly ring with of n X m matrix
> between minors
» gives ASL structure to the co-ordinate ring of n x m matrices

> correspond to

» Advantage - smaller expressions for ‘determinant-like’
polynomials; bideterminants are reflect symmetries coming
from the action (representation theory) of GL;,



Grobner bases in y—/&SLs

» Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis



Grobner bases in y—/&SLs

» Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis

\

'» Can we have a theory of Grdbner bases directly in p-ASLs?



Grobner bases in y—/&SLs

» Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis

\

'» Can we have a theory of Grdbner bases directly in p-ASLs?

» Trivially, since A is a finitely generated commutative algebra,

A%F[X]/]



Grobner bases in y—/&SLs

» Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis

» Can we have a theory of Grobner bases directly in p-ASLs?

» Trivially, since A is a finitely generated commutative algebra,

A%F[X]/]

» Thus for an ideal I C A, we can study Grdbner bases of the
ideal I+ ] C F[X] — this obscures symmetries



Grobner bases in y—/&SLs

» Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis

» Can we have a theory of Grébner bases directly in p-ASLs?

» Trivially, since A is a finitely generated commutative algebra,

A%F[X]/]

» Thus for an ideal I C A, we can study Grdbner bases of the
ideal I+ ] C F[X] — this obscures symmetries

Question
Can we build a theory of Grébner bases ‘native’ to p-ASLs, i.e.
Grébner theory without referencing the ideal ] 7
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Challenges

» Basis of p-ASL A = FX] /] consists only of standard

\ monomials (monomials outside X), not all monomials in X

» Product of standard monomials not necessarily standard,
might require straightening

» How do you define term order?
» How would you define division of monomials?

» What plays the role of monomial ideals?
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Term Order & Division

> A order on a p-ASL A is a total order < on
standard monomlals in A such that

\ » 1<m
» If a <band c=<d, and ac,bd # 0, then

LM(ac) < LM(bd)

» When does standard monomial m divide m':
» ordinary division in the polynomial ring, or

» m divides m’ if there exists standard monomial f such that

LM(mf) =m’
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» Given p-ASL A, w.r.t. A is another
\ p-ASL Ay on the same variables, and the same standard
'~ monomials such that for standard monomials m, m’

no straightening
—
me(m) - @ (m’) = 0 or e (LT(mm”))
%/_/

leading term of straightening
where ¢ : A — Aqq is the identity

Proposition

Every p-ASL A admits two algebras of leading terms — A gen where
the product is never 0, and, A qisc where product is 0 unless mm’
is also a standard monomial.
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» Given p-ASL A, algebra of Ieadlng terms Ay¢, and an ideal
\ ICA, then if:

» For all f €1, there exists g € G such that 71 (LM(g)) divides
e (LM(f)), or

» {m(LM(g)) : g € G}) = {rmie (LM(f)):: f.€ I}) (standard
monomial ideals in Ay)
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Our Mam Result

Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of
Grébner bases native to A. Specifically:
3

‘ ordinary Grébner ‘ p-ASL Grébner theory

Existence
Reduced
Universal
Syzygies
Algorithms
Krull Dim.

Lsxss
AR A S

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we
have a Grobner basis theory (called bd-Grébner bases).
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> is a p-ASL Grobner basis for
\ any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r, the set of minors of size > r is a universal bd-Grébner
basis for its ideal.

Takeaway
1. Given all our machinery, the proof is one-line

2. In the ordinary case, universal Grébner basis are known
only for maximal minors and minors of size 2
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Future Work

» In upcoming work, we have already extended our Grébner basis
theory to mildly non-commutative algebras, including the Weyl
i algebra

» Get bd-Grobner bases of annihilating D-ideals

» Compute Weyl closure, b-functions, etc. using bd-Grobner
bases in the Weyl algebra

» See if we can develop a bipermanent Grobner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)
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