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Gröbner Bases

▶ Is x3 divisible by x2 + x? EASY!

▶ Is polynomial f divisible by (h1,h2): does there exist (k1, k2)
such that h1k1 + h2k2 = f? HARD!

▶ e.g. Is x3 divisible by (x2 + x, x3 + 2x2)?

x3 = −x2 · (x2 + x) + x · (x3 + 2x2)

▶ The answer to the question above required cleverness
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Gröbner Bases
▶ Given an ideal I = ⟨h1, . . . ,hn⟩, a Gröbner basis of I is

G = {g1, . . . ,gm} such that

▶ ⟨g1, . . . ,gm⟩ = I

▶ checking if f ∈ I can be done mechanically using G

▶ Gröbner bases exist for all ideals, and there is an algorithm to
�nd them!

▶ UNDERSTATEMENT: Gröbner bases are very useful
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Computational Complexity Theory (CCT)

▶ CCT - classifying computational problems according to their
resource usage, and understanding the classi�cation itself

▶ Called `quantitative epistemology', CCT has revealed profound
insights into the mathematical universe, and has given P vs NP

▶ The algebraic version of P vs NP is VP vs VNP

▶ Determinantal complexity (dc) of a polynomial P: minimum
r ∈ N such that there is an r× r matrix M of a�ne linear
forms satisfying det(M) = P
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Computational Complexity Theory (CCT)

▶ example:

y+ 2x+ xz+ 2xy− x2z = det

 x y 0
−1 z+ y+ 2 x

1 z 1



▶ Thus dc(y+ 2x+ xz+ 2xy− x2z) ⩽ 3

▶ Permanent of n× n matrix (permn): Just n× n

determinant with no minus signs, e.g. x1,1x2,2 + x1,2x2,1

▶ Conjecture: dc(permn) = nω(1)
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Algebraic Complexity Theory

▶ Another important question in algebraic CCT is complexity of
matrix multiplication - currently O(n2.371339)

▶ Usually have sets parameterized by n ∈ Z, and seek
asymptotic information that is symbolic in n

▶ Sometimes you get intuition by computing small examples, e.g.
n = 2, 3, . . .

▶ Gröbner bases are well-suited to both of the above: they give
theoretical insight as well as are the key tool in e�ective
methods
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Gröbner Bases are not a Panacea

▶ Obtaining a Gröbner basis can be tremendously expensive -
EXPSPACE-complete (Mayr and Meyer [1982])

▶ Hard to get even simple cases to �nish, e.g. 3× 3 determinant
orbit closure, tensor rank of 3× 3 multiplication

▶ Gröbner bases tend to obscure symmetry!
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Algebraic de Rham Cohomology

▶ There are Gröbner basis methods to obtain Algebraic de Rham
Cohomology (Oaku and Takayama [1999, 2001])

▶ One can obtain lower bounds on decision tree complexity by
obtaining Betti numbers of semi-algebraic sets

▶ Requires computing Gröbner bases of D-ideals (ideals in the
Weyl algebra):

Wn := C
[{

Xi,
∂

∂Xi

}
i∈[n]

]/〈{
∂

∂Xi
· Xi − Xi · ∂

∂Xi
− 1

}
i∈[n]

〉
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Algebraic de Rham Cohomology

▶ We aimed to compute the cohomology of tensor rank varieties,
orbit closure of the determinant, etc.

▶ We couldn't even obtain cohomology of 3× 3 determinant
hypersurface by hand, or on Macaulay2

▶ Reason for failure - Gröbner basis methods in the Weyl algebra
obsure the determinantal nature of the D-ideals one has to
deal with

Question
Develop a Gröbner basis theory which takes advantage if

variety corresponding to ideal has large symmetry group, or is

`determinantal'
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Hodge Algebra (Alg. with Straightening Law)

▶ If an algebra A is a pseudo-ASL (p-ASL for short) then:

▶ A ∼= F[X⃗]
/
J , and

▶ there is a monomial ideal Σ ⊆ F[X⃗] such that monomials not in
Σ form an F-linear basis for A; such monomials are called
standard monomials.

▶ If A is an ASL, the product of two standard monomials can be
straightened into a linear combinaton of `smaller' standard
monomials

▶ ASLs arise as coordinate rings of algebraic varieties, e.g.
Grassmanians, determinantal varieties, �ag varieties, Schubert
varieties
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Bideterminants (products of minors)
Denoting

( r1, . . . , rk | c1, . . . ,ck ) := det


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de�nes the following product of minors (bideterminant)

( R | C ) :=
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i=1
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Bideterminants (products of minors)

▶ Standard bitableaux/bideterminant: entries in rows of both
tableaux are non-decreasing

▶ straightening law: product of any two minors in

F
[{

Xi,j

}
i∈[m],j∈[n]

]
can be expressed as an F-linear

combination of standard bideterminants

▶ Thus Standard bideterminants form an F-linear basis of
F
[{

Xi,j

}
i∈[m],j∈[n]

]



Bideterminants (products of minors)

▶ Standard bitableaux/bideterminant: entries in rows of both
tableaux are non-decreasing

▶ straightening law: product of any two minors in

F
[{

Xi,j

}
i∈[m],j∈[n]

]
can be expressed as an F-linear

combination of standard bideterminants

▶ Thus Standard bideterminants form an F-linear basis of
F
[{

Xi,j

}
i∈[m],j∈[n]

]



Bideterminants (products of minors)

▶ Standard bitableaux/bideterminant: entries in rows of both
tableaux are non-decreasing

▶ straightening law: product of any two minors in

F
[{

Xi,j

}
i∈[m],j∈[n]

]
can be expressed as an F-linear

combination of standard bideterminants

▶ Thus Standard bideterminants form an F-linear basis of
F
[{

Xi,j

}
i∈[m],j∈[n]

]



Bideterminants give Hodge Algebra

▶ De�ne

A = F[X1,1,X1,2,X2,1,X2,2, Y]
/
⟨X1,2X2,1 − X1,1X2,2 + Y⟩

Σ = ⟨X1,2X2,1⟩

▶ Note: X1,2X2,1 is a non-standard bideterminant[
1 2

∣∣∣∣ 2 1

]
,

▶ straightening of X1,2X2,1: X1,2X2,1 = X1,1X2,2 − Y

▶ (A,Σ) - the algebra of bideterminants - is an example of a
Hodge algebra

▶ As seen before, A ∼= F[X1,1,X1,2,X2,1,X2,2]
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Bideterminants give Hodge Algebra

▶ This generalizes

▶ poly ring with one variable for each minor of n×m matrix

▶ quotient by relations between minors

▶ gives ASL structure to the co-ordinate ring of n×m matrices

▶ standard monomials correspond to standard bitableaux

▶ Advantage - smaller expressions for `determinant-like'
polynomials; bideterminants are re�ect symmetries coming
from the action (representation theory) of GLn
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Gröbner bases in p-ASLs
▶ Generally, in p-ASLs, you have smaller expressions for

polynomials that are adapted to the p-ASL basis

▶ Can we have a theory of Gröbner bases directly in p-ASLs?

▶ Trivially, since A is a �nitely generated commutative algebra,

A ∼= F[X⃗]
/
J

▶ Thus for an ideal I ⊆ A, we can study Gröbner bases of the
ideal I+ J ⊆ F[X⃗] � this obscures symmetries

Question
Can we build a theory of Gröbner bases `native' to p-ASLs, i.e.

Gröbner theory without referencing the ideal J?
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Challenges

▶ Basis of p-ASL A = F[X⃗]
/
J consists only of standard

monomials (monomials outside Σ), not all monomials in X⃗

▶ Product of standard monomials not necessarily standard,
might require straightening

▶ How do you de�ne term order?

▶ How would you de�ne division of monomials?

▶ What plays the role of monomial ideals?
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Term Order & Division
▶ A p-ASL term order on a p-ASL A is a total order ≺ on

standard monomials in A such that

▶ 1 ⪯ m

▶ If a ≺ b and c ⪯ d, and ac,bd ̸= 0, then

LM(ac) ≺ LM(bd)

▶ When does standard monomial m divide m ′:

▶ ordinary division in the polynomial ring, or

▶ m divides m ′ if there exists standard monomial f such that

LM(mf) = m ′
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Auxilliary Algebra of Leading Terms

▶ Given p-ASL A, algebra of leading terms w.r.t. A is another
p-ASL Alt on the same variables, and the same standard
monomials such that for standard monomials m,m ′

πlt(m) · πlt(m
′) =

no straightening︷︸︸︷
0 or πlt(LT(mm ′))︸ ︷︷ ︸

leading term of straightening

where πlt : A → Alt is the identity

Proposition

Every p-ASL A admits two algebras of leading terms � Agen where

the product is never 0, and, Adisc where product is 0 unless mm ′

is also a standard monomial.
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Definition of p-ASL Gröbner Basis

▶ Given p-ASL A, algebra of leading terms Alt, and an ideal
I ⊆ A, then G ⊆ A is a p-ASL Gröbner basis if:

▶ For all f ∈ I, there exists g ∈ G such that πlt(LM(g)) divides
πlt(LM(f)), or

▶ ⟨{πlt(LM(g)) : g ∈ G}⟩ = ⟨{πlt(LM(f)) : f ∈ I}⟩ (standard
monomial ideals in Alt)
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Our Main Result
Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of

Gröbner bases native to A. Speci�cally:

ordinary Gröbner p-ASL Gröbner theory

Existence ✓ ✓
Reduced ✓ ✓
Universal ✓ ✓
Syzygies ✓ ✓
Algorithms ✓ ✓
Krull Dim. ✓ ✓

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we

have a Gröbner basis theory (called bd-Gröbner bases).
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Applications to Bideterminant Algebra

▶ Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for
any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r, the set of minors of size ⩾ r is a universal bd-Gröbner

basis for its ideal.

Takeaway

1. Given all our machinery, the proof is one-line

2. In the ordinary case, universal Gröbner basis are known

only for maximal minors and minors of size 2
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Future Work

▶ In upcoming work, we have already extended our Gröbner basis
theory to mildly non-commutative algebras, including the Weyl
algebra

▶ Get bd-Gröbner bases of annihilating D-ideals

▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner
bases in the Weyl algebra

▶ See if we can develop a bipermanent Gröbner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)
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