

Gröbner Bases Native to 'pseudo'-Hodge Algebras, with an Application to Bideterminants

Abhiram Natarajan

University of Warwick

Joint work with Joshua Grochow (Univ. of Colorado, Boulder, USA)

Gröbner Bases

- Is x^3 divisible by $x^2 + x$? **EASY!**

Gröbner Bases

- ▶ Is x^3 divisible by $x^2 + x$? **EASY!**
- ▶ Is polynomial f divisible by (h_1, h_2) : does there exist (k_1, k_2) such that $h_1 k_1 + h_2 k_2 = f$? **HARD!**

Gröbner Bases

- ▶ Is x^3 divisible by $x^2 + x$? **EASY!**
- ▶ Is polynomial f divisible by (h_1, h_2) : does there exist (k_1, k_2) such that $h_1 k_1 + h_2 k_2 = f$? **HARD!**
- ▶ e.g. Is x^3 divisible by $(x^2 + x, x^3 + 2x^2)$?

Gröbner Bases

- ▶ Is x^3 divisible by $x^2 + x$? **EASY!**
- ▶ Is polynomial f divisible by (h_1, h_2) : does there exist (k_1, k_2) such that $h_1 k_1 + h_2 k_2 = f$? **HARD!**
- ▶ e.g. Is x^3 divisible by $(x^2 + x, x^3 + 2x^2)$?

$$x^3 = -x^2 \cdot (x^2 + x) + x \cdot (x^3 + 2x^2)$$

Gröbner Bases

- ▶ Is x^3 divisible by $x^2 + x$? **EASY!**
- ▶ Is polynomial f divisible by (h_1, h_2) : does there exist (k_1, k_2) such that $h_1 k_1 + h_2 k_2 = f$? **HARD!**
- ▶ e.g. Is x^3 divisible by $(x^2 + x, x^3 + 2x^2)$?
$$x^3 = -x^2 \cdot (x^2 + x) + x \cdot (x^3 + 2x^2)$$
- ▶ The answer to the question above required **cleverness**

Gröbner Bases

- Given an ideal $I = \langle h_1, \dots, h_n \rangle$, a **Gröbner basis** of I is $G = \{g_1, \dots, g_m\}$ such that

Gröbner Bases

- ▶ Given an ideal $I = \langle h_1, \dots, h_n \rangle$, a **Gröbner basis** of I is $G = \{g_1, \dots, g_m\}$ such that
 - ▶ $\langle g_1, \dots, g_m \rangle = I$
 - ▶ checking if $f \in I$ can be done **mechanically** using G

Gröbner Bases

- ▶ Given an ideal $I = \langle h_1, \dots, h_n \rangle$, a **Gröbner basis** of I is $G = \{g_1, \dots, g_m\}$ such that
 - ▶ $\langle g_1, \dots, g_m \rangle = I$
 - ▶ checking if $f \in I$ can be done **mechanically** using G
- ▶ Gröbner bases exist for all ideals, and there is an algorithm to find them!

Gröbner Bases

- ▶ Given an ideal $I = \langle h_1, \dots, h_n \rangle$, a **Gröbner basis** of I is $G = \{g_1, \dots, g_m\}$ such that
 - ▶ $\langle g_1, \dots, g_m \rangle = I$
 - ▶ checking if $f \in I$ can be done **mechanically** using G
- ▶ Gröbner bases exist for all ideals, and there is an algorithm to find them!
- ▶ **UNDERSTATEMENT:** Gröbner bases are very useful

Computational Complexity Theory (CCT)

- ▶ CCT - classifying computational problems according to their resource usage, and understanding the classification itself

Computational Complexity Theory (CCT)

- ▶ CCT - classifying computational problems according to their resource usage, and understanding the classification itself
- ▶ Called 'quantitative epistemology', CCT has revealed profound insights into the mathematical universe, and has given P vs NP

Computational Complexity Theory (CCT)

- ▶ CCT - classifying computational problems according to their resource usage, and understanding the classification itself
- ▶ Called 'quantitative epistemology', CCT has revealed profound insights into the mathematical universe, and has given P vs NP
- ▶ The algebraic version of P vs NP is VP vs VNP

Computational Complexity Theory (CCT)

- ▶ CCT - classifying computational problems according to their resource usage, and understanding the classification itself
- ▶ Called 'quantitative epistemology', CCT has revealed profound insights into the mathematical universe, and has given P vs NP
- ▶ The algebraic version of P vs NP is VP vs VNP
- ▶ Determinantal complexity (dc) of a polynomial P: minimum $r \in \mathbb{N}$ such that there is an $r \times r$ matrix M of affine linear forms satisfying $\det(M) = P$

Computational Complexity Theory (CCT)

► example:

$$y + 2x + xz + 2xy - x^2z = \det \begin{pmatrix} x & y & 0 \\ -1 & z+y+2 & x \\ 1 & z & 1 \end{pmatrix}$$

Computational Complexity Theory (CCT)

- ▶ example:

$$y + 2x + xz + 2xy - x^2z = \det \begin{pmatrix} x & y & 0 \\ -1 & z+y+2 & x \\ 1 & z & 1 \end{pmatrix}$$

- ▶ Thus $\text{dc}(y + 2x + xz + 2xy - x^2z) \leq 3$

Computational Complexity Theory (CCT)

- ▶ example:

$$y + 2x + xz + 2xy - x^2z = \det \begin{pmatrix} x & y & 0 \\ -1 & z+y+2 & x \\ 1 & z & 1 \end{pmatrix}$$

- ▶ Thus $\text{dc}(y + 2x + xz + 2xy - x^2z) \leq 3$
- ▶ Permanent of $n \times n$ matrix (perm_n): Just $n \times n$ determinant with no minus signs, e.g. $x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$

Computational Complexity Theory (CCT)

- ▶ example:

$$y + 2x + xz + 2xy - x^2z = \det \begin{pmatrix} x & y & 0 \\ -1 & z+y+2 & x \\ 1 & z & 1 \end{pmatrix}$$

- ▶ Thus $dc(y + 2x + xz + 2xy - x^2z) \leq 3$
- ▶ Permanent of $n \times n$ matrix (perm_n): Just $n \times n$ determinant with no minus signs, e.g. $x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$
- ▶ Conjecture: $dc(\text{perm}_n) = n^{\omega(1)}$

Algebraic Complexity Theory

- Another important question in algebraic CCT is complexity of matrix multiplication - currently $O(n^{2.371339})$

Algebraic Complexity Theory

- ▶ Another important question in algebraic CCT is complexity of matrix multiplication - currently $O(n^{2.371339})$
- ▶ Usually have sets parameterized by $n \in \mathbb{Z}$, and seek asymptotic information that is symbolic in n

Algebraic Complexity Theory

- ▶ Another important question in algebraic CCT is complexity of matrix multiplication - currently $O(n^{2.371339})$
- ▶ Usually have sets parameterized by $n \in \mathbb{Z}$, and seek asymptotic information that is symbolic in n
- ▶ Sometimes you get intuition by computing small examples, e.g. $n = 2, 3, \dots$

Algebraic Complexity Theory

- ▶ Another important question in algebraic CCT is complexity of matrix multiplication - currently $O(n^{2.371339})$
- ▶ Usually have sets parameterized by $n \in \mathbb{Z}$, and seek asymptotic information that is symbolic in n
- ▶ Sometimes you get intuition by computing small examples, e.g. $n = 2, 3, \dots$
- ▶ Gröbner bases are well-suited to both of the above: they give theoretical insight as well as are the key tool in effective methods

Gröbner Bases are not a Panacea

- ▶ Obtaining a Gröbner basis can be **tremendously expensive** - EXPSPACE-complete (Mayr and Meyer [1982])

Gröbner Bases are not a Panacea

- ▶ Obtaining a Gröbner basis can be **tremendously expensive** - EXPSPACE-complete (Mayr and Meyer [1982])
- ▶ Hard to get even simple cases to finish, e.g. 3×3 determinant orbit closure, tensor rank of 3×3 multiplication

Gröbner Bases are not a Panacea

- ▶ Obtaining a Gröbner basis can be **tremendously expensive** - EXPSPACE-complete (Mayr and Meyer [1982])
- ▶ Hard to get even simple cases to finish, e.g. 3×3 determinant orbit closure, tensor rank of 3×3 multiplication
- ▶ Gröbner bases tend to **obscure symmetry**!

Algebraic de Rham Cohomology

- ▶ There are Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])

Algebraic de Rham Cohomology

- ▶ There are Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])
- ▶ One can obtain lower bounds on **decision tree complexity** by obtaining Betti numbers of semi-algebraic sets

Algebraic de Rham Cohomology

- ▶ There are Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])
- ▶ One can obtain lower bounds on **decision tree complexity** by obtaining Betti numbers of semi-algebraic sets
- ▶ Requires computing Gröbner bases of D-ideals (ideals in the Weyl algebra):

$$W_n := \mathbb{C} \left[\left\{ X_i, \frac{\partial}{\partial X_i} \right\}_{i \in [n]} \right] \left/ \left\langle \left\{ \frac{\partial}{\partial X_i} \cdot X_i - X_i \cdot \frac{\partial}{\partial X_i} - 1 \right\}_{i \in [n]} \right\rangle \right.$$

Algebraic de Rham Cohomology

- We aimed to compute the cohomology of tensor rank varieties, orbit closure of the determinant, etc.

Algebraic de Rham Cohomology

- ▶ We aimed to compute the cohomology of tensor rank varieties, orbit closure of the determinant, etc.
- ▶ We couldn't even obtain cohomology of 3×3 determinant hypersurface by hand, or on Macaulay2

Algebraic de Rham Cohomology

- ▶ We aimed to compute the cohomology of tensor rank varieties, orbit closure of the determinant, etc.
- ▶ We couldn't even obtain cohomology of 3×3 determinant hypersurface by hand, or on Macaulay2
- ▶ Reason for failure - Gröbner basis methods in the Weyl algebra obscure the determinantal nature of the D-ideals one has to deal with

Algebraic de Rham Cohomology

- We aimed to compute the cohomology of tensor rank varieties, orbit closure of the determinant, etc.
- We couldn't even obtain cohomology of 3×3 determinant hypersurface by hand, or on Macaulay2
- Reason for failure - Gröbner basis methods in the Weyl algebra obscure the determinantal nature of the D-ideals one has to deal with

Question

Develop a Gröbner basis theory which takes advantage if variety corresponding to ideal has large symmetry group, or is 'determinantal'

Hodge Algebra (Alg. with Straightening Law)

- If an algebra A is a **pseudo-ASL** (p-ASL for short) then:
 - $A \cong \mathbb{F}[\vec{X}] / J$, and

Hodge Algebra (Alg. with Straightening Law)

- If an algebra A is a **pseudo-ASL** (**p-ASL** for short) then:
 - $A \cong \mathbb{F}[\vec{X}] / J$, and
 - there is a monomial ideal $\Sigma \subseteq \mathbb{F}[\vec{X}]$ such that monomials not in Σ form an \mathbb{F} -linear basis for A ; such monomials are called **standard monomials**.

Hodge Algebra (Alg. with Straightening Law)

- If an algebra A is a **pseudo-ASL** (**p-ASL** for short) then:
 - $A \cong \mathbb{F}[\vec{X}] / J$, and
 - there is a monomial ideal $\Sigma \subseteq \mathbb{F}[\vec{X}]$ such that monomials not in Σ form an \mathbb{F} -linear basis for A ; such monomials are called **standard monomials**.
- If A is an **ASL**, the product of two standard monomials can be **straightened** into a linear combination of 'smaller' standard monomials

Hodge Algebra (Alg. with Straightening Law)

- ▶ If an algebra A is a **pseudo-ASL** (**p-ASL** for short) then:
 - ▶ $A \cong \mathbb{F}[\vec{X}] / J$, and
 - ▶ there is a monomial ideal $\Sigma \subseteq \mathbb{F}[\vec{X}]$ such that monomials not in Σ form an \mathbb{F} -linear basis for A ; such monomials are called **standard monomials**.
- ▶ If A is an **ASL**, the product of two standard monomials can be **straightened** into a linear combination of 'smaller' standard monomials
- ▶ ASLs arise as coordinate rings of algebraic varieties, e.g. Grassmannians, determinantal varieties, flag varieties, Schubert varieties

Bideterminants (products of minors)

Denoting

$$(r_1, \dots, r_k \mid c_1, \dots, c_k) := \det \begin{pmatrix} x_{r_1, c_1} & \dots & x_{r_1, c_k} \\ \vdots & \ddots & \vdots \\ x_{r_k, c_1} & \dots & x_{r_k, c_k} \end{pmatrix},$$

Bideterminants (products of minors)

Denoting

$$(r_1, \dots, r_k \mid c_1, \dots, c_k) := \det \begin{pmatrix} x_{r_1, c_1} & \dots & x_{r_1, c_k} \\ \vdots & \ddots & \vdots \\ x_{r_k, c_1} & \dots & x_{r_k, c_k} \end{pmatrix},$$

The combinatorial datum below (bitableau)

$$\left[\begin{array}{|c|c|} \hline r_1^{(1)} & r_1^{(2)} \\ \hline \vdots & \vdots \\ \hline \vdots & \vdots \\ \hline \vdots & r_{\lambda_2}^{(2)} \\ \hline r_{\lambda_1}^{(1)} & \\ \hline \end{array} \dots \begin{array}{|c|} \hline r_1^{(p)} \\ \hline \vdots \\ \hline r_{\lambda_p}^{(p)} \\ \hline \end{array} \dots \begin{array}{|c|c|} \hline c_1^{(1)} & c_1^{(2)} \\ \hline \vdots & \vdots \\ \hline \vdots & \vdots \\ \hline \vdots & c_{\lambda_2}^{(2)} \\ \hline c_{\lambda_1}^{(1)} & \\ \hline \end{array} \dots \begin{array}{|c|} \hline c_1^{(p)} \\ \hline \vdots \\ \hline c_{\lambda_p}^{(p)} \\ \hline \end{array} \right],$$

defines the following product of minors (bideterminant)

$$(R \mid C) := \prod_{i=1}^p (r_1^{(i)}, \dots, r_{\lambda_i}^{(i)} \mid c_1^{(i)}, \dots, c_{\lambda_i}^{(i)}).$$

Bideterminants (products of minors)

- Standard bitableaux/bideterminant: entries in rows of both tableaux are non-decreasing

Bideterminants (products of minors)

- ▶ Standard bitableaux/bideterminant: entries in rows of both tableaux are non-decreasing
- ▶ straightening law: product of any two minors in $\mathbb{F} \left[\{X_{i,j}\}_{i \in [m], j \in [n]} \right]$ can be expressed as an \mathbb{F} -linear combination of standard bideterminants

Bideterminants (products of minors)

- ▶ Standard bitableaux/bideterminant: entries in rows of both tableaux are non-decreasing
- ▶ straightening law: product of any two minors in $\mathbb{F} \left[\{X_{i,j}\}_{i \in [m], j \in [n]} \right]$ can be expressed as an \mathbb{F} -linear combination of standard bideterminants
- ▶ Thus Standard bideterminants form an \mathbb{F} -linear basis of $\mathbb{F} \left[\{X_{i,j}\}_{i \in [m], j \in [n]} \right]$

Bideterminants give Hodge Algebra

► Define

$$A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] / \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle$$

$$\Sigma = \langle X_{1,2}X_{2,1} \rangle$$

Bideterminants give Hodge Algebra

- ▶ Define

$$A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] / \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle$$

$$\Sigma = \langle X_{1,2}X_{2,1} \rangle$$

- ▶ Note: $X_{1,2}X_{2,1}$ is a non-standard bideterminant

$$\left[\begin{array}{|c|c|} \hline 1 & 2 \\ \hline \end{array} \middle| \begin{array}{|c|c|} \hline 2 & 1 \\ \hline \end{array} \right],$$

- ▶ straightening of $X_{1,2}X_{2,1}$: $X_{1,2}X_{2,1} = X_{1,1}X_{2,2} - Y$

Bideterminants give Hodge Algebra

- ▶ Define

$$A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] / \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle$$

$$\Sigma = \langle X_{1,2}X_{2,1} \rangle$$

- ▶ Note: $X_{1,2}X_{2,1}$ is a non-standard bideterminant

$$\left[\begin{array}{|c|c|} \hline 1 & 2 \\ \hline \end{array} \middle| \begin{array}{|c|c|} \hline 2 & 1 \\ \hline \end{array} \right],$$

- ▶ straightening of $X_{1,2}X_{2,1}$: $X_{1,2}X_{2,1} = X_{1,1}X_{2,2} - Y$
- ▶ (A, Σ) - the algebra of bideterminants - is an example of a Hodge algebra

Bideterminants give Hodge Algebra

- ▶ Define

$$A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] / \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle$$

$$\Sigma = \langle X_{1,2}X_{2,1} \rangle$$

- ▶ Note: $X_{1,2}X_{2,1}$ is a non-standard bideterminant

$$\left[\begin{array}{|c|c|} \hline 1 & 2 \\ \hline \end{array} \middle| \begin{array}{|c|c|} \hline 2 & 1 \\ \hline \end{array} \right],$$

- ▶ straightening of $X_{1,2}X_{2,1}$: $X_{1,2}X_{2,1} = X_{1,1}X_{2,2} - Y$
- ▶ (A, Σ) - the algebra of bideterminants - is an example of a Hodge algebra
- ▶ As seen before, $A \cong \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}]$

Bideterminants give Hodge Algebra

- ▶ This generalizes
- ▶ poly ring with one variable for each minor of $n \times m$ matrix
- ▶ quotient by relations between minors
- ▶ gives ASL structure to the co-ordinate ring of $n \times m$ matrices
- ▶ standard monomials correspond to standard bitableaux

Bideterminants give Hodge Algebra

- ▶ This generalizes
 - ▶ poly ring with **one variable for each minor** of $n \times m$ matrix
 - ▶ **quotient by relations** between minors
 - ▶ gives ASL structure to the co-ordinate ring of $n \times m$ matrices
 - ▶ **standard monomials** correspond to **standard bitableaux**
- ▶ Advantage - smaller expressions for 'determinant-like' polynomials; bideterminants are reflect symmetries coming from the action (representation theory) of GL_n

Gröbner bases in p-ASLs

- Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis

Gröbner bases in p-ASLs

- ▶ Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis
- ▶ Can we have a theory of Gröbner bases directly in p-ASLs?

Gröbner bases in p-ASLs

- ▶ Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis
- ▶ Can we have a theory of Gröbner bases directly in p-ASLs?
- ▶ Trivially, since A is a finitely generated commutative algebra,
$$A \cong \mathbb{F}[\vec{X}] \Big/ J$$

Gröbner bases in p-ASLs

- ▶ Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis
- ▶ Can we have a theory of Gröbner bases directly in p-ASLs?
- ▶ Trivially, since A is a finitely generated commutative algebra,
$$A \cong \mathbb{F}[\vec{X}] / J$$
- ▶ Thus for an ideal $I \subseteq A$, we can study Gröbner bases of the ideal $I + J \subseteq \mathbb{F}[\vec{X}]$ – this obscures symmetries

Gröbner bases in p-ASLs

- ▶ Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis
- ▶ Can we have a theory of Gröbner bases directly in p-ASLs?
- ▶ Trivially, since A is a finitely generated commutative algebra,
$$A \cong \mathbb{F}[\vec{X}] / J$$
- ▶ Thus for an ideal $I \subseteq A$, we can study Gröbner bases of the ideal $I + J \subseteq \mathbb{F}[\vec{X}]$ – this obscures symmetries

Question

Can we build a theory of Gröbner bases ‘native’ to p-ASLs, i.e. Gröbner theory without referencing the ideal J ?

Challenges

- Basis of p-ASL $A = \mathbb{F}[\vec{X}] / J$ consists only of **standard monomials** (monomials outside Σ), not all monomials in \vec{X}

Challenges

- ▶ Basis of p -ASL $A = \mathbb{F}[\vec{X}] / J$ consists only of **standard monomials** (monomials outside Σ), not all monomials in \vec{X}
- ▶ Product of standard monomials not necessarily standard, might require **straightening**

Challenges

- ▶ Basis of p-ASL $A = \mathbb{F}[\vec{X}] / J$ consists only of **standard monomials** (monomials outside Σ), not all monomials in \vec{X}
- ▶ Product of standard monomials not necessarily standard, might require **straightening**
 - ▶ How do you define **term order**?
 - ▶ How would you define **division** of monomials?
 - ▶ What plays the role of **monomial ideals**?

Term Order & Division

- A p-ASL term order on a p-ASL A is a total order \prec on standard monomials in A such that
 - $1 \preceq m$
 - If $a \prec b$ and $c \preceq d$, and $ac, bd \neq 0$, then

$$\text{LM}(ac) \prec \text{LM}(bd)$$

Term Order & Division

- A **p-ASL term order** on a p-ASL A is a total order \prec on standard monomials in A such that

- $1 \preceq m$

- If $a \prec b$ and $c \preceq d$, and $ac, bd \neq 0$, then

$$\text{LM}(ac) \prec \text{LM}(bd)$$

- When does standard monomial m divide m' :
 - **ordinary division** in the polynomial ring, or
 - m divides m' if **there exists** standard monomial f such that

$$\text{LM}(mf) = m'$$

Auxilliary Algebra of Leading Terms

- Given p -ASL A , **algebra of leading terms** w.r.t. A is another p -ASL A_{lt} on the same variables, and the same standard monomials such that for standard monomials m, m'

$$\pi_{lt}(m) \cdot \pi_{lt}(m') = \underbrace{0}_{\text{no straightening}} \quad \text{or} \quad \underbrace{\pi_{lt}(LT(mm'))}_{\text{leading term of straightening}}$$

where $\pi_{lt}: A \rightarrow A_{lt}$ is the identity

Auxilliary Algebra of Leading Terms

- Given p -ASL A , **algebra of leading terms** w.r.t. A is another p -ASL A_{lt} on the same variables, and the same standard monomials such that for standard monomials m, m'

$$\pi_{lt}(m) \cdot \pi_{lt}(m') = \underbrace{0}_{\text{no straightening}} \quad \text{or} \quad \underbrace{\pi_{lt}(LT(mm'))}_{\text{leading term of straightening}}$$

where $\pi_{lt}: A \rightarrow A_{lt}$ is the identity

Proposition

Every p -ASL A admits two algebras of leading terms – A_{gen} where the product is never 0, and, A_{disc} where product is 0 unless mm' is also a standard monomial.

Definition of p -ASL Gröbner Basis

- Given p -ASL A , algebra of leading terms A_{lt} , and an ideal $I \subseteq A$, then $G \subseteq A$ is a p -ASL Gröbner basis if:
 - For all $f \in I$, there exists $g \in G$ such that $\pi_{lt}(LM(g))$ divides $\pi_{lt}(LM(f))$, or

Definition of p -ASL Gröbner Basis

- Given p -ASL A , algebra of leading terms A_{lt} , and an ideal $I \subseteq A$, then $G \subseteq A$ is a p -ASL Gröbner basis if:
 - For all $f \in I$, there exists $g \in G$ such that $\pi_{lt}(LM(g))$ divides $\pi_{lt}(LM(f))$, or
 - $\langle \{\pi_{lt}(LM(g)) : g \in G\} \rangle = \langle \{\pi_{lt}(LM(f)) : f \in I\} \rangle$ (standard monomial ideals in A_{lt})

Our Main Result

Theorem (Grochow-N, 2025)

For any p -ASLs \mathcal{A} with a p -ASL term order, we have a theory of Gröbner bases native to \mathcal{A} . Specifically:

Our Main Result

Theorem (Grochow-N, 2025)

For any p -ASLs \mathcal{A} with a p -ASL term order, we have a theory of Gröbner bases native to \mathcal{A} . Specifically:

	ordinary Gröbner	p -ASL Gröbner theory
Existence	✓	✓
Reduced	✓	✓
Universal	✓	✓
Syzygies	✓	✓
Algorithms	✓	✓
Krull Dim.	✓	✓

Our Main Result

Theorem (Grochow-N, 2025)

For any p -ASLs \mathcal{A} with a p -ASL term order, we have a theory of Gröbner bases native to \mathcal{A} . Specifically:

	ordinary Gröbner	p -ASL Gröbner theory
Existence	✓	✓
Reduced	✓	✓
Universal	✓	✓
Syzygies	✓	✓
Algorithms	✓	✓
Krull Dim.	✓	✓

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p -ASL term order, thus we have a Gröbner basis theory (called bd -Gröbner bases).

Applications to Bideterminant Algebra

- Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for any p-ASL term order and any algebra of leading terms

Applications to Bideterminant Algebra

- Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r , the set of minors of size $\geq r$ is a universal bd-Gröbner basis for its ideal.

Applications to Bideterminant Algebra

- Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r , the set of minors of size $\geq r$ is a universal bd-Gröbner basis for its ideal.

Takeaway

1. *Given all our machinery, the proof is one-line*
2. *In the ordinary case, universal Gröbner basis are known only for maximal minors and minors of size 2*

Future Work

- ▶ In upcoming work, we have already extended our Gröbner basis theory to mildly non-commutative algebras, including the Weyl algebra

Future Work

- ▶ In upcoming work, we have already extended our Gröbner basis theory to mildly non-commutative algebras, including the Weyl algebra
- ▶ Get bd-Gröbner bases of annihilating D-ideals

Future Work

- ▶ In upcoming work, we have already extended our Gröbner basis theory to mildly non-commutative algebras, including the Weyl algebra
- ▶ Get bd-Gröbner bases of annihilating D-ideals
- ▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner bases in the Weyl algebra

Future Work

- ▶ In upcoming work, we have already extended our Gröbner basis theory to mildly non-commutative algebras, including the Weyl algebra
- ▶ Get bd-Gröbner bases of annihilating D-ideals
- ▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner bases in the Weyl algebra
- ▶ See if we can develop a bipermanent Gröbner basis theory (codimension of singular locus of permanent hypersurface is unknown!)

References

E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. *Advances in mathematics*, 46(3):305–329, 1982.

T. Oaku and N. Takayama. An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation. *J. Pure Appl. Algebra*, 139(1-3):201–233, 1999. doi: 10.1016/S0022-4049(99)00012-2.

T. Oaku and N. Takayama. Computing de Rham cohomology groups. In *Proceedings of the 33rd Symposium on Ring Theory and Representation Theory (Shimane, 2000)*, pages 19–22. Tokyo Univ. Agric. Technol., Tokyo, 2001.