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Complexity of Arrangements

I Arrangement - �nite collection of geometric objects

I Analysis of arrangements of algebraic sets, i.e.
⋃s
i=1 Z(Pi) -

important research area with applications (Agarwal-Sharir

2000)

I Knowledge of the Betti numbers of arrangements, has been

used for understanding �combinatorial complexity� (Basu 2002)
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Betti Numbers
I Betti numbers: The kth Betti number bk(X) of a

semi-algebraic set X represents the rank of the kth singular

(co)homology group of X

I Intuitively, bk(X) denotes the number of k-dimensional holes
in X

I b0(X) = #number of connected components

I b1(X) = #one-dimensional or circular holes

I b2(X) = #two-dimensional voids or cavities, etc.
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Why Betti Numbers?

I Betti numbers are invariant under continuous deformations

I They o�er a measure of complexity � e.g. height of algebraic

computation tree for membership in semialgebraic set is lower

bounded in terms of the Betti numbers (Yao 1997)

I In applications in incidence geometry, computational geometry,

etc., especially for polynomial partitioning, bounds on Betti

numbers of semi-algebraic sets are very important
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Previous work on Arrangements
I Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965),

Milnor (1964)) - P1, . . . ,Ps ∈ R[X1, . . . ,Xn], max degree d∑
j>0

bj

(
s⋃
i=1

Z(Pi)

)
= O(sndn)

I Bounds on individual Betti numbers (Basu 2003b)

bj

(
s⋃
i=1

Z(Pi)

)
= sn−jO(d)n

Question
What are the expected Betti numbers of an arrangement of

random polynomials?
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Distribution on Space of Polynomials

I There is a Gaussian measure on R[X0, . . . ,Xn](d) called

Edelman-Kostlan measure

I P ∼ KOS(n,d) if

P(X0, . . . ,Xn) =
∑

α=(α0,...,αn)∑n
i=0αi=d

ξαx
α0
0 . . . xαnn ,

where ξα ∼ N
(
0, d!
α0!...αn!

)
are independent

I Orthogonally-invariance: for any L ∈ O(n+ 1,R),
P(X) ≡dist. P(LX)

I No points or directions are preferred in projective space
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Expected Topology of Random Arrangements

Theorem (Basu-Lerario-N 2019)

Let P1, . . . ,Ps ∈ R[X0, . . . ,Xn] be homogeneous Kostlan forms,

each of degree at most d. Let Γ =
⋃s
i=1 Z(Pi). Then

E [b0(RPn \ Γ)] = 2snd
n/2 +O

(
sn−1d

(n−1)/2
)
.

Also, for 0 < i 6 n− 1

E [bi(RPn \ Γ)] = O
(
sn−id

(n−1)/2
)
.

Interpretation

Worst-case bound on b0 is
(
s
n

)
O(dn), while expectation is

equal to 2sndn/2.
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Mayer-Vietoris Spectral Sequence
I A1, . . . ,As - triangulations of Γ1, . . . , Γs, respectively

I Aα0,...,αp :=
⋂p
i=0

Aαi ; C
i(A) - i-co-chains of A

Theorem (see for e.g. Basu [2003a])

There exists a �rst quadrant cohomological spectral sequence

(Er, δr)r∈Z, where

Er =
⊕
p,q∈Z

Ep,qr , and E
p,q
0 =

⊕
α0<...<αp

Cq(Aα0,...,αp),

with morphisms

δr : E
p,q
r → Ep+r,q−r+1

r ,

where

Er+1
∼= Hδr(Er).

This spectral sequence collapses at En and converges to the

cohomology of the union.
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Random Spectral Sequence

Proposition

Let A1, . . . ,As be random simplicial complexes. Consider the same

de�nitions as before. For every r > 0, de�ne ea,br := E
[
rank Ea,br

]
.

We have

e
p,q
r+1 6 e

p,q
r ,

and, if Ep+r,q−r+1
r = 0,

e
p,q
r+1 > e

p,q
r − ep−r,q+r−1

r .

Proof.

E
p,q
r+1

∼= Ker(δr : E
p,q
r → E

p+r,q−r+1
r )

/
Img(δr : E

p−r,q+r−1
r → E

p,q
r ) .
�
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Proof of arrangements theorem

We need

E [b0(S
n \ Γ)] =

n∑
k=1

en−k,k−1∞ + 1.

First (k > 2),
n∑
k>2

en−k,k−1∞ 6
n∑
k>2

en−k,k−1
1

6 sn−1O(d
(n−1)/2),

because of Gayet-Welschinger (2015) (for any p < n− 1):

e
p,q
1 6

(
s

p+ 1

)
O(d

(n−p−1)/2).
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Proof of arrangements theorem - contd. . .
Now it remains to give precise bounds on en−1,0∞ :

en−1,0∞ = en−1,0
n 6 en−1,0

1 = 2snd
n/2,

by Edelman-Kostlan (1995), Shub-Smale (1993).

Lower bound:

en−1,0∞ = en−1,0
n > en−1,0

n−1 − e0,n−2
n−1

> en−1,0
n−1 − e0,n−2

1

> en−1,0
n−2 − e1,n−3

n−2 − e0,n−2
1

...

> en−1,0
1 −

(
n−2∑
i=0

ei,n−2−i
1

)
> 2snd

n/2 −O
(
sn−1d

(n−1)/2
)
.

Just put everything together now. �
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Betti Numbers of Sets Defined by Quadrics

I Growth of Betti numbers of s.a. sets de�ned by quadratic

polynomials often shows behaviour di�erent to general

semi-algebraic sets

I S ⊆ Rn de�ned by {Pi > 0}i∈[s], deg(Pi) 6 2 (Barvinok

1997) ∑
k>0

bk(S) 6 n
O(s)

Question
What is the expected Betti number of a union of random

quadrics?
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b0 of Quadrics’ Arrangement

Theorem (Basu-Lerario-N 2019)

Let P1, . . . ,Ps ∈ R[X0, . . . ,Xn] be homogeneous Kostlan quadrics.

Let Γi ⊂ RPn be the zero set of Pi, and de�ne Γ =
⋃s
i=1 Γi. Then

lim
s→∞ E [b0(Γ)]

s
= 0.

Interpretation

Our general theorem suggests E [b0(Γ)] = O(s). For quadrics,
we prove E [b0(Γ)] = o(s).
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Quadrics Arrangement - Proof

I Let Sym(n+ 1,R) be the vector space of (n+ 1)× (n+ 1)
real symmetric matrices; we have

Sym(n+ 1,R) ∼= R[x0, . . . , xn](2), Q 7→ 〈x,Qx〉.

I RPN = P(Sym(n+ 1,R)) - projectivization of the space of

symmetric matrices (here N =
(
n+2

2

)
− 1)

I Turns out sampling a Kostlan quadric is equivalent to sampling

uniformly at random from SN
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Characterization of ‘Quadrics’ Intersection

Theorem (Calabi 1964)

For n > 1 let q1,q2 ∈ R[x0, . . . , xn](2) and denote by

Γ1, Γ2 ⊂ RPn their (possibly empty) zero sets. Let Pn ⊆ SN denote

the set of positive quadratic forms. Let ` ⊂ SN be the projective

line ` = {[λ1q1 + λ2q2]}λi∈RP1 (a pencil of quadrics). Then:

Γ1 ∩ Γ2 6= ∅ ⇐⇒ ` ∩ Pn = ∅.

Interpretation

Our sampling process is equivalent to a random graph:

I Sample s points uniformly at random from SN

I Join points i� the great circle joining points does not pass

through Pn
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Obstacle Random Graph - Properties
I Good cone: for q ∈ SN

gq(Pn) =
{
x ∈ SN | `(q, x) ∩ Pn = ∅

}
.

Pn

gq(Pn)

gq(Pn)

SN

q

SN

Pn
r

gr(Pn)

gr(Pn)

I Has �avour of Gn,p, but p is a random variable

P
[
q ′ gets connected to q

]
=

vol (gq)

vol (SN)

I Probability random variables are not independent
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I For each pair of vertices u, v with an edge, the corresponding

zero sets of the polynomials intersect

I Model denoted G(N,Pn, s)
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What is the average number of connected components in the

above random graph?
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Average Connected Components

Theorem (Basu-Lerario-N 2019)

The expected number of connected component of G(N,Pn, s)
satis�es:

lim
s→∞ E [b0(G(N,Pn, s))]

s
6

vol (Pn)

vol
(
RPN

) .

Interpretation

Considering vol(Pn)
vol(SN)

to be �xed, we have that the expected

number of connected components is o(s).
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Average Connected Components - Proof

SN

Pn

Pn(ε)

B1 B2 B3 B4 . . .

I For any Bi ⊆ Pn(ε)
c, there exists Gi ⊆ Pn(ε)

c,

µ(Gi) > 0 and ∀p ∈ Gi, gp(Pn) ⊇ Bi.
I Using coupon-collector type argument, bound number of

samples required to collect all Bi. �
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Future Work

I Expected Betti numbers of sign conditions on tuples of

polynomials

I Show strong bounds on the average number of connected

components, at least for certain restricted types of obstacles

I Other questions about this random graph model

I Ramsey-theoretic results about Γ
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Ramsey-Theoretic Result

Corollary (of Theorem on b0(Γ) for quadrics)

Let Γ be the graph of s quadrics. Then, for any ε > 0,

lim
s→∞P [Γc contains a clique of size εs] = 0.

Theorem (Alon et al. [2005])

For any semi-algebraic graph G = (V ,E), there exists a constant

δ > 0, such that one of the following is true:

1. There exists a clique of size |V |δ in G.

2. The complement of G has a clique of size |V |δ.

Interpretation

Large cliques are impossible in Γc.
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