Betti Numbers of Random Hypersurface Arrangements

Abhiram Natarajan University of Colorado-Boulder, USA

Joint work with Saugata Basu, Antonio Lerario

Outline

Introduction

Topology of Arrangement of Random Polynomials

References

Complexity of Arrangements

- Arrangement - finite collection of geometric objects

Complexity of Arrangements

- Arrangement - finite collection of geometric objects

Analysis of arrangements of algebraic sets, i.e. $\bigcup_{i=1}^{s} Z\left(P_{i}\right)$ important research area with applications (Agarwal-Sharir 2000)

Complexity of Arrangements

- Arrangement - finite collection of geometric objects
- Analysis of arrangements of algebraic sets, i.e. $\bigcup_{i=1}^{s} Z\left(P_{i}\right)$ important research area with applications (Agarwal-Sharir 2000)

- Knowledge of the Betti numbers of arrangements, has been used for understanding "combinatorial complexity" (Basu 2002)

Betti Numbers

> Betti numbers: The $\mathrm{k}^{\text {th }}$ Betti number $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ of a semi-algebraic set X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X

Betti Numbers

- Betti numbers: The $\mathrm{k}^{\text {th }}$ Betti number $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ of a semi-algebraic set X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X

Betti Numbers

> Betti numbers: The $\mathrm{k}^{\text {th }}$ Betti number $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ of a semi-algebraic set X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X

- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components

Betti Numbers

> Betti numbers: The $\mathrm{k}^{\text {th }}$ Betti number $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ of a semi-algebraic set X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X

- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components
- $\mathrm{b}_{1}(\mathrm{X})=$ \#one-dimensional or circular holes

Betti Numbers

> Betti numbers: The $\mathrm{k}^{\text {th }}$ Betti number $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ of a semi-algebraic set X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X

- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components
- $\mathrm{b}_{1}(\mathrm{X})=$ \#one-dimensional or circular holes
- $\mathrm{b}_{2}(\mathrm{X})=$ \#two-dimensional voids or cavities, etc.

Betti Numbers - Examples

Object	b_{0}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{i} \geqslant 3$
.	1	0	0	0

Betti Numbers - Examples

Object	b_{0}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{\mathrm{i} \geqslant 3}$
$\dot{ }$	1	0	0	0
	1	1	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i} \geqslant 3$
1	0	0	0	
0	1	1	0	0
	0	1	0	

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
	1	0	0	0
1	1	0	1	0
1	1	2	1	0

Why Betti Numbers?

- Betti numbers are invariant under continuous deformations

Why Betti Numbers?

- Betti numbers are invariant under continuous deformations
- They offer a measure of complexity - e.g. height of algebraic computation tree for membership in semialgebraic set is lower bounded in terms of the Betti numbers (Yao 1997)

Why Betti Numbers?

- Betti numbers are invariant under continuous deformations
- They offer a measure of complexity - e.g. height of algebraic computation tree for membership in semialgebraic set is lower bounded in terms of the Betti numbers (Yao 1997)
- In applications in incidence geometry, computational geometry, etc., especially for polynomial partitioning, bounds on Betti numbers of semi-algebraic sets are very important
previous work on Arrangements
- Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965), Milnor (1964)) - $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]$, max degree d

$$
\sum_{j \geqslant 0} b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=O\left(s^{n} d^{n}\right)
$$

Previous work on Arrangements

- Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965), Milnor (1964)) - $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]$, max degree d

$$
\sum_{j \geqslant 0} b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=O\left(s^{n} d^{n}\right)
$$

- Bounds on individual Betti numbers (Basu 2003b)

$$
b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=s^{n-j} O(d)^{n}
$$

Previous work on Arrangements

- Sum of Betti nos. (Oleinik-Petrovski (1949), Thom (1965), Milnor (1964)) - $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$, max degree d

$$
\sum_{j \geqslant 0} b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=O\left(s^{n} d^{n}\right)
$$

- Bounds on individual Betti numbers (Basu 2003b)

$$
b_{j}\left(\bigcup_{i=1}^{s} Z\left(P_{i}\right)\right)=s^{n-j} O(d)^{n}
$$

Question
What are the expected Betti numbers of an arrangement of random polynomials?

Outline

Introduction

Topology of Arrangement of Random Polynomials

References

Distribution on Space of Polynomials

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure

Distribution on Space of Polynomials

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure
- $P \sim \operatorname{KOS}(n, d)$ if

$$
P\left(X_{0}, \ldots, X_{n}\right)=\sum_{\substack{\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \\ \sum_{i=0}^{n} \alpha_{i}=d}} \xi_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}
$$

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent

Distribution on Space of Polynomials

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure
$-P \sim \operatorname{KOS}(n, d)$ if

$$
P\left(X_{0}, \ldots, X_{n}\right)=\sum_{\substack{\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \\ \sum_{i=0}^{n} \alpha_{i}=d}} \xi_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}
$$

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent

- Orthogonally-invariance: for any $\mathrm{L} \in \mathrm{O}(\mathrm{n}+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

Distribution on Space of Polynomials

- There is a Gaussian measure on $\mathbb{R}\left[X_{0}, \ldots, X_{n}\right]_{(d)}$ called Edelman-Kostlan measure
- $\mathrm{P} \sim \operatorname{KOS}(\mathrm{n}, \mathrm{d})$ if

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent
- Orthogonally-invariance: for any $\mathrm{L} \in \mathrm{O}(\mathrm{n}+1, \mathbb{R})$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

- No points or directions are preferred in projective space

Expected Topology of Random Arrangements

Theorem (Basu-Lerario-N 2019)
Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be homogeneous Kostlan forms, each of degree at most d . Let $\Gamma=\bigcup_{i=1}^{s} \mathrm{Z}\left(\mathrm{P}_{\mathrm{i}}\right)$. Then

$$
\mathbb{E}\left[\mathrm{b}_{0}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=2 s^{n} \mathrm{~d}^{n / 2}+\mathrm{O}\left(s^{n-1} \mathrm{~d}^{(n-1) / 2}\right)
$$

Also, for $0<i \leqslant n-1$

$$
\mathbb{E}\left[\mathrm{b}_{i}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=\mathrm{O}\left(\mathrm{~s}^{n-i} \mathrm{~d}^{(n-1) / 2}\right)
$$

Expected Topology of Random Arrangements

Theorem (Basu-Lerario-N 2019)
Let $P_{1}, \ldots, P_{s} \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous Kostlan forms, each of degree at most d . Let $\Gamma=\bigcup_{i=1}^{s} \mathrm{Z}\left(\mathrm{P}_{\mathrm{i}}\right)$. Then

$$
\mathbb{E}\left[\mathrm{b}_{0}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=2 s^{n} d^{n / 2}+O\left(s^{n-1} d^{(n-1) / 2}\right)
$$

Also, for $0<i \leqslant n-1$

$$
\mathbb{E}\left[\mathrm{b}_{i}\left(\mathbb{R} \mathbb{P}^{n} \backslash \Gamma\right)\right]=\mathrm{O}\left(\mathrm{~s}^{n-i} \mathrm{~d}^{(n-1) / 2}\right)
$$

Interpretation
Worst-case bound on b_{0} is $\binom{s}{n} \mathrm{O}\left(\mathrm{d}^{n}\right)$, while expectation is equal to $2 s^{n} d^{n / 2}$.

Mayer-Dietoris Spectral Sequence

- A_{1}, \ldots, A_{s} - triangulations of $\Gamma_{1}, \ldots, \Gamma_{s}$, respectively

Mayer-Dietoris Spectral Sequence

- A_{1}, \ldots, A_{s} - triangulations of $\Gamma_{1}, \ldots, \Gamma_{s}$, respectively
- $A_{\alpha_{0}, \ldots, \alpha_{p}}:=\bigcap_{i=0}^{p} A_{\alpha_{i}} ; C^{i}(A)$ - i-co-chains of A

Mayer-Dietoris Spectral Seguence

- A_{1}, \ldots, A_{s} - triangulations of $\Gamma_{1}, \ldots, \Gamma_{s}$, respectively
- $A_{\alpha_{0}, \ldots, \alpha_{p}}:=\bigcap_{i=0}^{p} A_{\alpha_{i}} ; C^{i}(A)$ - i-co-chains of A

Theorem (see for e.g. Basu [2003a])
There exists a first quadrant cohomological spectral sequence $\left(E_{r}, \delta_{r}\right)_{r \in Z}$, where

$$
E_{r}=\bigoplus_{p, q \in \mathbb{Z}} E_{r}^{p, q}, \quad \text { and } \quad E_{0}^{p, q}=\bigoplus_{\alpha_{0}<\ldots<\alpha_{p}} C^{q}\left(A_{\alpha_{0}, \ldots, \alpha_{p}}\right) \text {, }
$$

with morphisms

$$
\delta_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}
$$

where

$$
E_{r+1} \cong H_{\delta_{r}}\left(E_{r}\right) .
$$

This spectral sequence collapses at E_{n} and converges to the cohomology of the union.

Random Spectral Seguence

Proposition

Let A_{1}, \ldots, A_{s} be random simplicial complexes. Consider the same definitions as before. For every $r \geqslant 0$, define $e_{r}^{a, b}:=\mathbb{E}\left[\right.$ rank $\left.E_{r}^{a, b}\right]$. We have

$$
e_{r+1}^{p, q} \leqslant e_{r}^{p, q},
$$

and, if $\mathrm{E}_{\mathrm{r}}^{\mathrm{p}+\mathrm{r}, \mathrm{q}-\mathrm{r}+1}=0$,

$$
e_{r+1}^{p, q} \geqslant e_{r}^{p, q}-e_{r}^{p-r, q+r-1}
$$

Random Spectral Sequence

Proposition

Let A_{1}, \ldots, A_{s} be random simplicial complexes. Consider the same definitions as before. For every $r \geqslant 0$, define $e_{r}^{a, b}:=\mathbb{E}\left[\right.$ rank $\left.E_{r}^{a, b}\right]$. We have

$$
e_{r+1}^{p, q} \leqslant e_{r}^{p, q},
$$

and, if $\mathrm{E}_{\mathrm{r}}^{\mathrm{p}+\mathrm{r}, \mathrm{q}-\mathrm{r}+1}=0$,

$$
e_{r+1}^{p, q} \geqslant e_{r}^{p, q}-e_{r}^{p-r, q+r-1}
$$

Proof.

$$
E_{r+1}^{p, q} \cong \operatorname{Ker}\left(\delta_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right) / \operatorname{lmg}\left(\delta_{r}: E_{r}^{p-r, q+r-1} \rightarrow E_{r}^{p, q}\right)
$$

Proof of arrangements theorem

We need

$$
\mathbb{E}\left[b_{0}\left(S^{n} \backslash \Gamma\right)\right]=\sum_{k=1}^{n} e_{\infty}^{n-k, k-1}+1
$$

Proof of arrangements theorem

We need

$$
\mathbb{E}\left[b_{0}\left(S^{n} \backslash \Gamma\right)\right]=\sum_{k=1}^{n} e_{\infty}^{n-k, k-1}+1
$$

First $(k \geqslant 2)$,

$$
\begin{aligned}
\sum_{k \geqslant 2}^{n} e_{\infty}^{n-k, k-1} & \leqslant \sum_{k \geqslant 2}^{n} e_{1}^{n-k, k-1} \\
& \leqslant s^{n-1} O\left(d^{(n-1) / 2}\right)
\end{aligned}
$$

because of Gayet-Welschinger (2015) (for any $\mathrm{p}<\mathrm{n}-1$):

$$
e_{1}^{p, q} \leqslant\binom{ s}{p+1} O\left(d^{(n-p-1) / 2}\right) .
$$

Proof of arrangements theorem - contd...
Now it remains to give precise bounds on $e_{\infty}^{\mathfrak{n}-1,0}$:

$$
e_{\infty}^{n-1,0}=e_{n}^{n-1,0} \leqslant e_{1}^{n-1,0}=2 s^{n} d^{n / 2},
$$

by Edelman-Kostlan (1995), Shub-Smale (1993).

Proof of arrangements theorem - contd...

Now it remains to give precise bounds on $e_{\infty}^{\mathfrak{n}-1,0}$.

$$
e_{\infty}^{n-1,0}=e_{n}^{n-1,0} \leqslant e_{1}^{n-1,0}=2 s^{n} d^{n / 2},
$$

by Edelman-Kostlan (1995), Shub-Smale (1993). Lower bound:

$$
\begin{aligned}
e_{\infty}^{n-1,0}=e_{n}^{n-1,0} & \geqslant e_{n}^{n-1,0}-e_{n-1}^{0, n-2} \\
& \geqslant e_{n}^{n-1,0}-e_{1}^{0, n-2} \\
& \geqslant e_{n-2}^{n-1,0}-e_{n-2}^{1, n-3}-e_{1}^{0, n-2}
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant e_{1}^{n-1,0}-\left(\sum_{i=0}^{n-2} e_{1}^{i, n-2-i}\right) \\
& \geqslant 2 s^{n} d^{n / 2}-O\left(s^{n-1} d^{(n-1) / 2}\right) .
\end{aligned}
$$

Proof of arrangements theorem - contd...

Now it remains to give precise bounds on $e_{\infty}^{\mathfrak{n}-1,0}$.

$$
e_{\infty}^{n-1,0}=e_{n}^{n-1,0} \leqslant e_{1}^{n-1,0}=2 s^{n} d^{n / 2},
$$

by Edelman-Kostlan (1995), Shub-Smale (1993). Lower bound:

$$
\begin{aligned}
e_{\infty}^{n-1,0}=e_{n}^{n-1,0} & \geqslant e_{n}^{n-1,0}-e_{n-1}^{0, n-2} \\
& \geqslant e_{n-1}^{n-1,0}-e_{1}^{0, n-2} \\
& \geqslant e_{n-2}^{n-1,0}-e_{n-2}^{1, n-3}-e_{1}^{0, n-2}
\end{aligned}
$$

:

$$
\begin{aligned}
& \geqslant e_{1}^{n-1,0}-\left(\sum_{i=0}^{n-2} e_{1}^{i, n-2-i}\right) \\
& \geqslant 2 s^{n} d^{n / 2}-O\left(s^{n-1} d^{(n-1) / 2}\right) .
\end{aligned}
$$

Just put everything together now.

Betti Numbers of Sets Defined by \&uadrics

- Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets

Betti Numbers of Sets Defined by \&uadrics

- Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets
- $S \subseteq \mathbb{R}^{n}$ defined by $\left\{P_{i} \geqslant 0\right\}_{i \in[s]}, \operatorname{deg}\left(P_{i}\right) \leqslant 2$ (Barvinok 1997)

$$
\sum_{k \geqslant 0} b_{k}(S) \leqslant n^{O(s)}
$$

Betti Numbers of Sets Defined by \&uadrics

- Growth of Betti numbers of s.a. sets defined by quadratic polynomials often shows behaviour different to general semi-algebraic sets
- $S \subseteq \mathbb{R}^{n}$ defined by $\left\{P_{i} \geqslant 0\right\}_{i \in[s]}, \operatorname{deg}\left(P_{i}\right) \leqslant 2$ (Barvinok 1997)

$$
\sum_{k \geqslant 0} b_{k}(S) \leqslant n^{O(s)}
$$

Question

What is the expected Betti number of a union of random quadrics?

b_{0} of Quadrics' Arrangement

Theorem (Basu-Lerario-N 2019)
Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be homogeneous Kostlan quadrics. Let $\Gamma_{i} \subset \mathbb{R P}^{n}$ be the zero set of P_{i}, and define $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$. Then

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}(\Gamma)\right]}{s}=0 .
$$

b_{0} of Quadrics' Arrangement

Theorem (Basu-Lerario-N 2019)
Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}} \in \mathbb{R}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be homogeneous Kostlan quadrics. Let $\Gamma_{i} \subset \mathbb{R P}^{n}$ be the zero set of P_{i}, and define $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$. Then

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}(\Gamma)\right]}{s}=0 .
$$

Interpretation
Our general theorem suggests $\mathbb{E}\left[\mathrm{b}_{0}(\Gamma)\right]=\mathrm{O}(\mathrm{s})$. For quadrics, we prove $\mathbb{E}\left[\mathrm{b}_{0}(\Gamma)\right]=\mathrm{o}(\mathrm{s})$.

Quadrics Arrangement - proof

- Let $\operatorname{Sym}(n+1, \mathbb{R})$ be the vector space of $(n+1) \times(n+1)$ real symmetric matrices; we have

$$
\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad \mathrm{Q} \mapsto\langle x, \mathrm{Qx}\rangle
$$

Quadrics Arrangement - proof

- Let $\operatorname{Sym}(n+1, \mathbb{R})$ be the vector space of $(n+1) \times(n+1)$ real symmetric matrices; we have

$$
\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad \mathrm{Q} \mapsto\langle x, \mathrm{Q} x\rangle
$$

$>\mathbb{R P}^{\mathrm{N}}=\mathbb{P}(\operatorname{Sym}(n+1, \mathbb{R}))$ - projectivization of the space of symmetric matrices (here $\mathrm{N}=\binom{\mathrm{n}+2}{2}-1$)

Quadrics trrangement - proof

- Let $\operatorname{Sym}(n+1, \mathbb{R})$ be the vector space of $(n+1) \times(n+1)$ real symmetric matrices; we have

$$
\operatorname{Sym}(n+1, \mathbb{R}) \cong \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]_{(2)}, \quad \mathrm{Q} \mapsto\langle x, \mathrm{Qx}\rangle
$$

$>\mathbb{R P}^{\mathrm{N}}=\mathbb{P}(\operatorname{Sym}(n+1, \mathbb{R}))$ - projectivization of the space of symmetric matrices (here $\mathrm{N}=\binom{\mathrm{n}+2}{2}-1$)

- Turns out sampling a Kostlan quadric is equivalent to sampling uniformly at random from S^{N}

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{n} \subseteq \mathrm{~S}^{\mathrm{N}}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{n}=\emptyset
$$

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{n} \subseteq S^{N}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{\mathrm{n}}=\emptyset .
$$

Interpretation
Our sampling process is equivalent to a random graph:

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{n} \subseteq S^{N}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{\mathrm{n}}=\emptyset .
$$

Interpretation
Our sampling process is equivalent to a random graph:

- Sample s points uniformly at random from S^{N}

Characterization of 'Quadrics' Intersection

Theorem (Calabi 1964)
For $n \geqslant 1$ let $\mathrm{q}_{1}, \mathrm{q}_{2} \in \mathbb{R}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]_{(2)}$ and denote by
$\Gamma_{1}, \Gamma_{2} \subset \mathbb{R} \mathbb{P}^{n}$ their (possibly empty) zero sets. Let $\mathcal{P}_{\mathfrak{n}} \subseteq \mathrm{S}^{\mathrm{N}}$ denote the set of positive quadratic forms. Let $\ell \subset S^{N}$ be the projective line $\ell=\left\{\left[\lambda_{1} q_{1}+\lambda_{2} q_{2}\right]\right\}_{\lambda_{i} \in \mathbb{R}^{1}}$ (a pencil of quadrics). Then:

$$
\Gamma_{1} \cap \Gamma_{2} \neq \emptyset \Longleftrightarrow \ell \cap \mathcal{P}_{\mathrm{n}}=\emptyset .
$$

Interpretation
Our sampling process is equivalent to a random graph:

- Sample s points uniformly at random from S^{N}
- Join points iff the great circle joining points does not pass through \mathcal{P}_{n}

Jllustration of 'Obstacle' Random Graph

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

$$
g_{q}\left(\mathcal{P}_{n}\right)=\left\{x \in S^{N} \mid \ell(q, x) \cap \mathcal{P}_{n}=\emptyset\right\} .
$$

Obstacle Random Graph - Properties

- Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

$$
g_{\mathrm{q}}\left(\mathcal{P}_{\mathrm{n}}\right)=\left\{x \in \mathrm{~S}^{\mathrm{N}} \mid \ell(\mathrm{q}, x) \cap \mathcal{P}_{\mathrm{n}}=\emptyset\right\} .
$$

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

- Has flavour of $G_{n, p}$, but p is a random variable

$$
\mathbb{P}\left[q^{\prime} \text { gets connected to } \mathrm{q}\right]=\frac{\operatorname{vol}\left(\mathrm{g}_{\mathrm{q}}\right)}{\operatorname{vol}\left(\mathrm{S}^{N}\right)}
$$

Obstacle Random Graph - Properties

\checkmark Good cone: for $\mathrm{q} \in \mathrm{S}^{\mathrm{N}}$

- Has flavour of $G_{n, p}$, but p is a random variable

$$
\mathbb{P}\left[q^{\prime} \text { gets connected to } \mathrm{q}\right]=\frac{\operatorname{vol}\left(\mathrm{g}_{\mathrm{q}}\right)}{\operatorname{vol}\left(\mathrm{S}^{N}\right)}
$$

- Probability random variables are not independent

Obstacle Random Graph

- For each pair of vertices u, v with an edge, the corresponding zero sets of the polynomials intersect

Obstacle Random Graph

- For each pair of vertices u, v with an edge, the corresponding zero sets of the polynomials intersect
- Model denoted $\mathcal{G}\left(\mathrm{N}, \mathcal{P}_{\mathrm{n}}, \mathrm{s}\right)$

Obstacle Random Graph

- For each pair of vertices u, v with an edge, the corresponding zero sets of the polynomials intersect
- Model denoted $\mathcal{G}\left(\mathrm{N}, \mathcal{P}_{\mathrm{n}}, \mathrm{s}\right)$

Question

What is the average number of connected components in the above random graph?

Average Connected Components

Theorem (Basu-Lerario-N 2019)
The expected number of connected component of $\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)$ satisfies:

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}\left(\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)\right)\right]}{s} \leqslant \frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(\mathbb{R P}^{N}\right)}
$$

Average Connected Components

Theorem (Basu-Lerario-N 2019)
The expected number of connected component of $\mathcal{G}\left(N, \mathcal{P}_{n}, s\right)$ satisfies:

$$
\lim _{s \rightarrow \infty} \frac{\mathbb{E}\left[b_{0}\left(\mathcal{S}\left(N, \mathcal{P}_{n}, s\right)\right)\right]}{s} \leqslant \frac{\operatorname{vol}\left(\mathcal{P}_{n}\right)}{\operatorname{vol}\left(\mathbb{R P}^{N}\right)}
$$

Interpretation
Considering $\frac{\operatorname{vol}\left(\mathcal{P}_{\mathfrak{n}}\right)}{\operatorname{vol}\left(\mathrm{S}^{N}\right)}$ to be fixed, we have that the expected number of connected components is $\mathrm{o}(\mathrm{s})$.

Average Connected Components - Proof

Average Connected Components - Proof

Average Connected Components - Proof

Average Connected Components - Proof

Average Connected Components - Proof

《 For any $\mathrm{B}_{\mathrm{i}} \subseteq \mathcal{P}_{\mathrm{n}}(\varepsilon)^{\mathrm{c}}$, there exists $\mathrm{G}_{\mathrm{i}} \subseteq \mathcal{P}_{\mathrm{n}}(\varepsilon)^{\mathrm{c}}$,

$$
\mu\left(\mathrm{G}_{\mathrm{i}}\right)>0 \quad \text { and } \quad \forall \mathrm{p} \in \mathrm{G}_{i}, \mathrm{~g}_{\mathrm{p}}\left(\mathcal{P}_{\mathrm{n}}\right) \supseteq \mathrm{B}_{\mathrm{i}} .
$$

Average Connected Components - Proof

- For any $\mathrm{B}_{\mathrm{i}} \subseteq \mathcal{P}_{n}(\varepsilon)^{c}$, there exists $\mathrm{G}_{\mathrm{i}} \subseteq \mathcal{P}_{\mathfrak{n}}(\varepsilon)^{\mathrm{c}}$,

$$
\mu\left(\mathrm{G}_{\mathrm{i}}\right)>0 \quad \text { and } \quad \forall \mathrm{p} \in \mathrm{G}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{p}}\left(\mathcal{P}_{\mathrm{n}}\right) \supseteq \mathrm{B}_{\mathrm{i}} .
$$

- Using coupon-collector type argument, bound number of samples required to collect all B_{i}.

Future LDork

- Expected Betti numbers of sign conditions on tuples of polynomials

Future Work

- Expected Betti numbers of sign conditions on tuples of polynomials
- Show strong bounds on the average number of connected components, at least for certain restricted types of obstacles

Future Work

- Expected Betti numbers of sign conditions on tuples of polynomials
- Show strong bounds on the average number of connected components, at least for certain restricted types of obstacles
- Other questions about this random graph model

Future Work

- Expected Betti numbers of sign conditions on tuples of polynomials
- Show strong bounds on the average number of connected components, at least for certain restricted types of obstacles
- Other questions about this random graph model
- Ramsey-theoretic results about Γ

Ramsey-Theoretic Result

Corollary (of Theorem on $\mathrm{b}_{0}(\Gamma)$ for quadrics)
Let Γ be the graph of s quadrics. Then, for any $\varepsilon>0$,

$$
\lim _{s \rightarrow \infty} \mathbb{P}\left[\Gamma^{\mathrm{C}} \text { contains a clique of size } \varepsilon s\right]=0 \text {. }
$$

Ramsey-Theoretic Result

Corollary (of Theorem on $\mathrm{b}_{0}(\Gamma)$ for quadrics)
Let Γ be the graph of s quadrics. Then, for any $\varepsilon>0$, $\lim _{s \rightarrow \infty} \mathbb{P}\left[\Gamma^{c}\right.$ contains a clique of size $\left.\varepsilon s\right]=0$.

Theorem (Alon et al. [2005])
For any semi-algebraic graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, there exists a constant $\delta>0$, such that one of the following is true:

1. There exists a clique of size $|\mathrm{V}|^{\delta}$ in G .
2. The complement of G has a clique of size $|\mathrm{V}|^{\delta}$.

Ramsey-Theoretic Result

Corollary (of Theorem on $\mathrm{b}_{0}(\Gamma)$ for quadrics)
Let Γ be the graph of s quadrics. Then, for any $\varepsilon>0$,

$$
\lim _{s \rightarrow \infty} \mathbb{P}\left[\Gamma^{c} \text { contains a clique of size } \varepsilon s\right]=0 .
$$

Theorem (Alon et al. [2005])
For any semi-algebraic graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, there exists a constant $\delta>0$, such that one of the following is true:

1. There exists a clique of size $|\mathrm{V}|^{\delta}$ in G .
2. The complement of G has a clique of size $|\mathrm{V}|^{\delta}$.

Interpretation
Large cliques are impossible in Γ^{c}.

Outline

Introduction

Topology of Arrangement of Random Polynomials

References

References

P. K. Agarwal and M. Sharir. Arrangements and their applications. In Handbook of computational geometry, pages 49-119. Elsevier, 2000.
N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir. Crossing patterns of semi-algebraic sets. J. Combin. Theory Ser. A, 111(2):310-326, 2005. ISSN 0097-3165. doi: 10.1016/j.jcta.2004.12.008. URL https://doi-org.ezproxy.lib.purdue.edu/10.1016/j.jcta.2004.12.008.
A. I. Barvinok. On the betti numbers of semialgebraic sets defined by few quadratic inequalities. 1997.
S. Basu. The combinatorial and topological complexity of a single cell. Discrete \& Computational Geometry, 29(1):41-59, 2002.
S. Basu. Different bounds on the different Betti numbers of semi-algebraic sets. Discrete Comput. Geom., 30(1):65-85, 2003a. ISSN 0179-5376. ACM Symposium on Computational Geometry (Medford, MA, 2001).
S. Basu. Different bounds on the different betti numbers of semi-algebraic sets. Discrete and Computational Geometry, 30(1):65-85, 2003b.
S. Basu, A. Lerario, and A. Natarajan. Betti numbers of random hypersurface arrangements. In Preparation, 2019.
E. Calabi. Linear systems of real quadratic forms. Proceedings of the American Mathematical Society, 15(5):844-846, 1964.
A. Edelman and E. Kostlan. How many zeros of a random polynomial are real? Bulletin of the American Mathematical Society, 32(1):1-37, 1995.
D. Gayet and J.-Y. Welschinger. Expected topology of random real algebraic submanifolds. Journal of the Institute of Mathematics of Jussieu, 14(4):673-702, 2015.
J. Milnor. On the betti numbers of real varieties. Proceedings of the American Mathematical Society, 15(2):275-280, 1964.
O. Oleinik and I. Petrovsky. On the topology of real algebraic hypersurfaces. Izv. Acad. Nauk SSSR, 13: 389-402, 1949.
M. Shub and S. Smale. Complexity of bezout's theorem it volumes and probabilities. In Computational algebraic geometry, pages 267-285. Springer, 1993.
R. Thom. Sur I'homologie des variétés algébriques réelles. Differential and combinatorial topology, pages 255-265, 1965.
A. C.-C. Yao. Decision tree complexity and betti numbers. Journal of Computer and System Sciences, 55(1):36-43, 1997.

