Zeros of Polynomials on Definable Hypersurfaces -pathologies exist, but they are

rare

Abhiram Natarajan
Joint work with Saugata Basu and Antonio Lerario

Algebraic Jechniques in Combinatorial Geometry

- Guth-Katz [2010, 2015] introduced techniques from algebraic geometry to solve problems the joints problem and the Erdős distinct distances problem

Algebraic Jechniques in Combinatorial Geometry

- Guth-Katz [2010, 2015] introduced techniques from algebraic geometry to solve problems the joints problem and the Erdós distinct distances problem
- One technique, called polynomial partitioning, has helped solve problems in combinatorial and computational geometry (e.g. incidences, cycle elimination)

Algebraic Jechniques in Combinatorial Geometry

- Guth-Katz [2010, 2015] introduced techniques from algebraic geometry to solve problems the joints problem and the Erdós distinct distances problem
- One technique, called polynomial partitioning, has helped solve problems in combinatorial and computational geometry (e.g. incidences, cycle elimination)
- Polynomial partitioning is a divide-and-conquer technique simple and works well in any dimension

Basic Algebro-Geometric Definitions

- Algebraic Set: The locus of common zeros of $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{s}(x)=0\right\}
$$

Basic Algebro-Geometric Definitions

- Algebraic Set: The locus of common zeros of $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{s}(x)=0\right\}
$$

Basic Algebro-Geometric Definitions

- Algebraic Set: The locus of common zeros of $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{s}(x)=0\right\}
$$

- Semialgebraic set: A set $S \subseteq \mathbb{R}^{n}$ that is a finite Boolean combination of sets defined by polynomial inequalities:

$$
\left\{x \in \mathbb{R}^{n} \mid P(x) \geqslant 0\right\}
$$

Basic Algebro-Geometric Definitions

- Algebraic Set: The locus of common zeros of $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$, $P_{i} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, i.e.

$$
Z\left(P_{1}, \ldots, P_{s}\right):=\left\{x \in \mathbb{R}^{n} \mid P_{1}(x)=\ldots=P_{s}(x)=0\right\}
$$

- Semialgebraic set: A set $S \subseteq \mathbb{R}^{n}$ that is a finite Boolean combination of sets defined by polynomial inequalities:

$$
\left\{x \in \mathbb{R}^{n} \mid P(x) \geqslant 0\right\}
$$

$$
\left\{-\left(x^{2}+y^{2}-1\right) \geqslant 0\right\} \quad\{y \geqslant x\} \wedge\{x \geqslant y\} \quad\left\{x^{2}+y^{2} \leqslant 2\right\} \wedge(\{y-x \geqslant 4\} \vee \neg\{x-y \leqslant 4\})
$$

Basic Algebro-Geometric Definitions

- Dimension of semialgebraic set (S): Largest integer d such that there is an embedding of $[0,1]^{\mathrm{d}}$ in S

Basic Algebro-Geometric Definitions

- Dimension of semialgebraic set (S): Largest integer d such that there is an embedding of $[0,1]^{\mathrm{d}}$ in S
- 0-dimensional

Basic Algebro-Geometric Definitions

- Dimension of semialgebraic set (S): Largest integer d such that there is an embedding of $[0,1]^{\mathrm{d}}$ in S
- 0-dimensional
- 1-dimensional

Basic Algebro-Geometric Definitions

- Dimension of semialgebraic set (S): Largest integer d such that there is an embedding of $[0,1]^{\mathrm{d}}$ in S
- 0-dimensional $\quad \therefore$
- 1-dimensional

- 2-dimensional

Cells Induced by a polynomial

- Cells induced by a polynomial (P): Connected components of the complement of $Z(P)$, denoted $\mathcal{C C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P): Connected components of the complement of $Z(P)$, denoted $\mathcal{C C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P): Connected components of the complement of $Z(P)$, denoted $\mathcal{C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P): Connected components of the complement of $Z(P)$, denoted $\mathcal{C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P) : Connected components of the complement of $Z(P)$, denoted $\mathcal{C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P) : Connected components of the complement of $Z(P)$, denoted $\mathcal{C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P) : Connected components of the complement of $Z(P)$, denoted $\mathcal{C}(P)$

Cells Induced by a polynomial

- Cells induced by a polynomial (P) : Connected components of the complement of $Z(P)$, denoted $\mathcal{C}(P)$

Polynomial partitioning

Theorem (Guth and Katz [2015], Guth [2015])
Let Γ be a finite set of k-dimensional algebraic sets in \mathbb{R}^{n}. For any
$\mathrm{D} \geqslant 1$, there is a polynomial P of degree D , each cell induced by $Z(P)$ intersects at most $\sim \frac{|\Gamma|}{\mathrm{D}^{n-k}}$ algebraic sets of Γ.

polynomial partitioning

Theorem (Guth and Katz [2015], Guth [2015])
Let Γ be a finite set of k-dimensional algebraic sets in \mathbb{R}^{n}. For any $\mathrm{D} \geqslant 1$, there is a polynomial P of degree D , each cell induced by $Z(P)$ intersects at most $\sim \frac{|\Gamma|}{\mathrm{D}^{n-k}}$ algebraic sets of Γ.

polynomial partitioning

Theorem (Guth and Katz [2015], Guth [2015])
Let Γ be a finite set of k-dimensional algebraic sets in \mathbb{R}^{n}. For any
$\mathrm{D} \geqslant 1$, there is a polynomial P of degree D , each cell induced by $Z(P)$ intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ algebraic sets of Γ.

Understanding Polynomial Partitioning

Let $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be of degree at most D :

Understanding Polynomial Partitioning

Let $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be of degree at most D :
\downarrow P induces at most $\sim \mathrm{D}^{n}$ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])

Understanding Polynomial Partitioning

Let $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be of degree at most D :
\downarrow P induces at most $\sim \mathrm{D}^{n}$ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])

- A k-dimensional algebraic set intersects at most $\sim \mathrm{D}^{\mathrm{k}}$ cells of $\mathcal{C C}(P)$ (Barone-Basu [2012])

Understanding Polynomial Partitioning

Let $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be of degree at most D :
\downarrow P induces at most $\sim \mathrm{D}^{\mathrm{n}}$ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])

- A k-dimensional algebraic set intersects at most $\sim \mathrm{D}^{\mathrm{k}}$ cells of $\mathcal{C C}(P)$ (Barone-Basu [2012])
$>$ We have $|\Gamma|$ no. of algebraic sets, so there are at most $\sim|\Gamma| \times \mathrm{D}^{\mathrm{k}}$ algebraic-set-cell intersections

Understanding Polynomial Partitioning

Let $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be of degree at most D :
\downarrow P induces at most $\sim \mathrm{D}^{\mathrm{n}}$ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])

- A k-dimensional algebraic set intersects at most $\sim \mathrm{D}^{\mathrm{k}}$ cells of CC(P) (Barone-Basu [2012])
$>$ We have $|\Gamma|$ no. of algebraic sets, so there are at most $\sim|\Gamma| \times D^{k}$ algebraic-set-cell intersections
- There are most D^{n} cells, so $\sim \frac{|\Gamma| \times \mathrm{D}^{\mathrm{k}}}{\mathrm{D}^{n}}$ denotes equipartition

Understanding Polynomial Partitioning

Let $P \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be of degree at most D :

- P induces at most $\sim \mathrm{D}^{n}$ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])
- A k-dimensional algebraic set intersects at most $\sim \mathrm{D}^{\mathrm{k}}$ cells of $\mathcal{C C}(P)$ (Barone-Basu [2012])
$>$ We have $|\Gamma|$ no. of algebraic sets, so there are at most $\sim|\Gamma| \times D^{k}$ algebraic-set-cell intersections
- There are most D^{n} cells, so $\sim \frac{|\Gamma| \times \mathrm{D}^{\mathrm{k}}}{\mathrm{D}^{n}}$ denotes equipartition

See survey by Sharir [2017] for wide range of applications

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, S_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying
\rightarrow All algebraic subsets of \mathbb{R}^{n} are in δ_{n}

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying

- All algebraic subsets of \mathbb{R}^{n} are in S_{n}
> S_{n} is closed under complementation, finite unions \& intersections

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying

- All algebraic subsets of \mathbb{R}^{n} are in S_{n}
$>S_{n}$ is closed under complementation, finite unions \& intersections
- If $A \in S_{n}, B \in S_{m}$, then $A \times B \in S_{n+m}$

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying
\checkmark All algebraic subsets of \mathbb{R}^{n} are in S_{n}
$>S_{n}$ is closed under complementation, finite unions \& intersections

- If $A \in S_{n}, B \in S_{m}$, then $A \times B \in S_{n+m}$
- If $\Pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates, $A \in S_{n+1}$, then $\Pi(A) \in \mathcal{S}_{n}$

O-Minimal Structures

O-minimal structure \mathcal{S} on $\mathbb{R}: \mathcal{S}=\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}, \mathcal{S}_{n} \subseteq 2^{\mathbb{R}^{n}}$, satisfying
\downarrow All algebraic subsets of \mathbb{R}^{n} are in S_{n}
> S_{n} is closed under complementation, finite unions \& intersections

- If $A \in S_{n}, B \in S_{m}$, then $A \times B \in S_{n+m}$
- If $\Pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates, $A \in S_{n+1}$, then $\Pi(A) \in S_{n}$

Elements of δ_{1} are precisely finite unions of points and intervals

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure
- Introduced by Pillay-Steinhorn [1986, 1988]; axiomatic generalization of semi-algebraic geometry

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure
\downarrow Introduced by Pillay-Steinhorn [1986, 1988]; axiomatic generalization of semi-algebraic geometry
- Other examples $-\mathbb{R}$ with \exp function (e.g. $x^{3}+e^{x+2 y} \leqslant 0$), restricted analytic functions (e.g. $\sin x^{2}=0$ on $[-1,1]$), etc.

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure
\downarrow Introduced by Pillay-Steinhorn [1986, 1988]; axiomatic generalization of semi-algebraic geometry
$>$ Other examples $-\mathbb{R}$ with \exp function (e.g. $x^{3}+\mathrm{e}^{x+2 y} \leqslant 0$), restricted analytic functions (e.g. $\sin x^{2}=0$ on $[-1,1]$), etc.
- Sets in an o-minimal stucture have tame topology

Why O-Minimal Structures?

- Semi-algebraic sets in \mathbb{R}^{n} form an o-minimal structure
\checkmark Introduced by Pillay-Steinhorn [1986, 1988]; axiomatic generalization of semi-algebraic geometry
- Other examples $-\mathbb{R}$ with \exp function (e.g. $x^{3}+\mathrm{e}^{x+2 y} \leqslant 0$), restricted analytic functions (e.g. $\sin x^{2}=0$ on $[-1,1]$), etc.
- Sets in an o-minimal stucture have tame topology

Question

Can we generalize polynomial partitioning to the o-minimal setting?

Bounds on Topology of Semi-Algebraic Sets

All polynomials are from $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$:

- Bezout theorem - If intersection of $Z\left(P_{1}\right), \ldots, Z\left(P_{n}\right)$ is finite,

$$
\left|\bigcap_{i=1}^{n} Z\left(P_{i}, \mathbb{C}\right)\right| \leqslant \operatorname{deg}\left(P_{1}\right) \ldots \operatorname{deg}\left(P_{n}\right)
$$

Bounds on Topology of Semi-Algebraic Sets

All polynomials are from $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$:

- Bezout theorem - If intersection of $Z\left(P_{1}\right), \ldots, Z\left(P_{n}\right)$ is finite,

$$
\left|\bigcap_{i=1}^{n} Z\left(P_{i}, \mathbb{C}\right)\right| \leqslant \operatorname{deg}\left(P_{1}\right) \ldots \operatorname{deg}\left(P_{n}\right)
$$

- Real Analogue of Bezout theorem (Barone-Basu [2016]):

$$
\left|\bigcap_{i=1}^{n} Z\left(P_{i}, \mathbb{R}\right)\right| \lesssim n^{n} d_{1} \ldots d_{n}
$$

Bounds on Topology of Semi-Algebraic Sets

All polynomials are from $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$:

- Bezout theorem - If intersection of $Z\left(P_{1}\right), \ldots, Z\left(P_{n}\right)$ is finite,

$$
\left|\bigcap_{i=1}^{n} Z\left(P_{i}, \mathbb{C}\right)\right| \leqslant \operatorname{deg}\left(P_{1}\right) \ldots \operatorname{deg}\left(P_{n}\right)
$$

- Real Analogue of Bezout theorem (Barone-Basu [2016]):

$$
\left|\bigcap_{i=1}^{n} Z\left(P_{i}, \mathbb{R}\right)\right| \lesssim n^{n} d_{1} \ldots d_{n}
$$

- Connected Components on algebraic set (Barone-Basu [2012]): Given $\operatorname{deg}(Q) \ll \operatorname{deg}(P), \operatorname{dim}(Z(Q))=k$, then $Z(Q)$ enters at most $\sim \operatorname{deg}(P)^{k}$ cells in CC(P)

O-minimal Combinatorial Geometry

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao [2012])

O-minimal Combinatorial Geometry

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao [2012])
- O-minimal incidence questions - active area of research (e.g. Chernikov-Starchenko [2015], Basu-Raz [2017])

O-minimal Combinatorial Geometry

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao [2012])
> O-minimal incidence questions - active area of research (e.g. Chernikov-Starchenko [2015], Basu-Raz [2017])
- Additional Defintions:
- Definable Set: Element of $S_{\mathfrak{n}}$ (recall $\mathcal{S}=\left(S_{\mathfrak{n}}\right)_{\mathfrak{n}>0}$ o-minimal)

O-minimal Combinatorial Geometry

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao [2012])
> O-minimal incidence questions - active area of research (e.g. Chernikov-Starchenko [2015], Basu-Raz [2017])
- Additional Defintions:
- Definable Set: Element of S_{n} (recall $S=\left(S_{n}\right)_{n>0}$ o-minimal)
- Hypersurface: Algebraic Set in \mathbb{R}^{n} with dimension $n-1$.

O-minimal Combinatorial Geometry

- Such topological bounds are important in incidence questions (e.g. Solymosi-Tao [2012])
- O-minimal incidence questions - active area of research (e.g. Chernikov-Starchenko [2015], Basu-Raz [2017])
- Additional Defintions:
- Definable Set: Element of \mathcal{S}_{n} (recall $\mathcal{S}=\left(\mathcal{S}_{n}\right)_{n>0}$ o-minimal)
- Hypersurface: Algebraic Set in \mathbb{R}^{n} with dimension $n-1$.

Question

Given a definable hypersurface γ, and a degree D polynomial $\mathrm{P} \in \mathbb{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]$, how many cells induced by P does γ enter?

Topological Preliminaries

- Diffeomorphism: Bijective function ψ that is bi-differentiable

Topological Preliminaries

D Diffeomorphism: Bijective function ψ that is bi-differentiable

- Ambient diffeotopy: For manifolds $a \subseteq A, b \subseteq B$, we write

$$
(A, a) \sim(B, b)
$$

if there exists a diffeomorphism $\psi: A \rightarrow B$, and $\psi(a)=b$

Topological 仿eliminaries

- Diffeomorphism: Bijective function ψ that is bi-differentiable
- Ambient diffeotopy: For manifolds $a \subseteq A, b \subseteq B$, we write

$$
(A, a) \sim(B, b)
$$

if there exists a diffeomorphism $\psi: A \rightarrow B$, and $\psi(a)=b$

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components
- $\mathrm{b}_{1}(\mathrm{X})=$ \#one-dimensional or circular holes

Betti Numbers

- Betti numbers: The $k^{\text {th }}$ Betti number $b_{k}(X)$ of a topological manifold X represents the rank of the $k^{\text {th }}$ singular (co)homology group of X
- Intuitively, $\mathrm{b}_{\mathrm{k}}(\mathrm{X})$ denotes the number of k -dimensional holes in X
- $\mathrm{b}_{0}(\mathrm{X})=$ \#number of connected components
- $\mathrm{b}_{1}(\mathrm{X})=$ \#one-dimensional or circular holes
- $\mathrm{b}_{2}(\mathrm{X})=$ \#two-dimensional voids or cavities, etc.

Betti Numbers - Examples

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
.	1	0	0	0
\ldots.	5	0	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
\cdots	1	0	0	0
\cdots	5	0	0	0
\bigcirc	1	1	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i \geqslant 3}$
\ldots	1	0	0	0
	5	0	0	0
	1	1	0	0
	1	0	0	0

Betti Numbers - Examples

Object	b_{0}	b_{1}	b_{2}	$b_{i} \geqslant 3$
\ldots	1	0	0	0
0	5	0	0	0
0	1	1	0	0
	1	0	0	0
				1

Betti Numbers - Examples

Why Betti Numbers?

- Betti numbers are invariant under diffeomorphism (\subseteq homeomorphism \subseteq homotopy equivalence)

Why Betti Numbers?

\downarrow Betti numbers are invariant under diffeomorphism (\subseteq homeomorphism \subseteq homotopy equivalence)

- They offer a measure of complexity - Height of algebraic computation tree for membership in semialgebraic set is lower bounded in terms of the Betti numbers (Yao [1997], Gabrielov and Vorobjov [2017])

I donut like this joke!

Object	β_{0}	β_{1}	β_{2}	$\beta_{i \geqslant 3}$
$0 \sim 1$	2	1	0	
	1	2	1	0

Definable Fypersurfaces \cap Darieties

Informal Theorem
You can make the Betti numbers of the intersection of a definable hypersurface and an algebraic set arbitrarily large.

Definable Fypersurfaces \cap Darieties

Informal Theorem

You can make the Betti numbers of the intersection of a definable hypersurface and an algebraic set arbitrarily large.

Theorem (Existence of Pathologies - Basu-Lerario-N (2018) ${ }^{1}$)
Let $\left\{Z_{d}\right\}_{d \in \mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1}. There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{R P}^{\mathrm{n}}$, a disk $\mathrm{D} \subset \Gamma$, and a sequence $\left\{\mathfrak{p}_{\mathrm{m}}\right\}_{\mathfrak{m} \in \mathbb{N}}$ of homogeneous polynomials with $\operatorname{deg}\left(\mathfrak{p}_{\mathrm{m}}\right)=\mathrm{d}_{\mathrm{m}}$ such that the intersection $\mathrm{Z}\left(\mathrm{p}_{\mathrm{m}}\right) \cap \Gamma$ is stable and:

$$
\left(\mathrm{D}, \mathrm{Z}\left(\mathfrak{p}_{\mathrm{m}}\right) \cap \mathrm{D}\right) \sim\left(\mathbb{R}^{\mathfrak{n}-1}, \mathrm{Z}_{\mathrm{d}_{\mathrm{m}}}\right) \quad \text { for all } \mathrm{m} \in \mathbb{N} \text {. }
$$

[^0]proof of Existence of Pathologies - Tools

Proof of Existence of Pathologies - Tools

Proof of Existence of Pathologies - Tools

Proof of Existence of Pathologies - Tools

Theorem (Thom's Isotopy Lemma)
Suppose for a disk $D \subset \mathbb{R}^{n-1}$, a regular hypersurface $Z(f)$, $(\mathrm{D}, \mathrm{D} \cap \mathrm{Z}(\mathrm{f})) \sim\left(\mathbb{R}^{\mathrm{n}-1}, \mathrm{Z}\right)$. There exists $\delta=\delta(\mathrm{f})>0$ such that for any regular function $h: \bar{D} \rightarrow \mathbb{R}$ with $\|h\|_{C^{1}} \leqslant \delta$,

$$
(D, D \cap Z(f+h)) \sim\left(\mathbb{R}^{n-1}, Z\right)
$$

Proof of Existence of Pathologies - Tools

Theorem (Thom's Isotopy Lemma)
Suppose for a disk $D \subset \mathbb{R}^{n-1}$, a regular hypersurface $Z(f)$, $(\mathrm{D}, \mathrm{D} \cap \mathrm{Z}(\mathrm{f})) \sim\left(\mathbb{R}^{\mathrm{n}-1}, \mathrm{Z}\right)$. There exists $\delta=\delta(\mathrm{f})>0$ such that for any regular function $h: \bar{D} \rightarrow \mathbb{R}$ with $\|h\|_{C^{1}} \leqslant \delta$,

$$
(D, D \cap Z(f+h)) \sim\left(\mathbb{R}^{n-1}, Z\right)
$$

Theorem (Seifert [1936])
Given a regular, compact hypersurface $\mathrm{Z} \subset \mathrm{D} \subset \mathbb{R}^{\mathrm{n}-1}$, there exists a polynomial $\mathrm{q}: \mathbb{R}^{\mathrm{n}-1} \rightarrow \mathbb{R}$ such that $\mathrm{Z}(\mathrm{q})$ is regular and

$$
(\mathrm{D}, \mathrm{Z}(\mathrm{q})) \sim\left(\mathbb{R}^{\mathrm{n}-1}, \mathrm{Z}\right)
$$

Proof of Existence of Pathologies - Key Ideas

- Recall we need definable Γ and polynomials P_{1}, P_{2}, \ldots s.t. $\Gamma \cap \mathrm{Z}\left(\mathrm{P}_{1}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$

Proof of Existence of Pathologies - Key Ideas
\rightarrow Recall we need definable Γ and polynomials P_{1}, P_{2}, \ldots s.t. $\Gamma \cap \mathrm{Z}\left(\mathrm{P}_{1}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$

- Using Seifert's theorem, pick suitably $\left(\mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots\right)$ such that $\mathrm{Z}\left(\mathrm{Q}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \mathrm{Z}\left(\mathrm{Q}_{3}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$

Proof of Existence of Pathologies - Key Ideas

- Recall we need definable Γ and polynomials P_{1}, P_{2}, \ldots s.t. $\Gamma \cap \mathrm{Z}\left(\mathrm{P}_{1}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Using Seifert's theorem, pick suitably $\left(\mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots\right)$ such that $\mathrm{Z}\left(\mathrm{Q}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \mathrm{Z}\left(\mathrm{Q}_{3}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Let Γ be the graph of $g(x)=\mathrm{Q}_{2}+\mathrm{Q}_{3}+\ldots$ modified suitably

Proof of Existence of Pathologies - Key Ideas

- Recall we need definable Γ and polynomials P_{1}, P_{2}, \ldots s.t. $\Gamma \cap \mathrm{Z}\left(\mathrm{P}_{1}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Using Seifert's theorem, pick suitably $\left(\mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots\right)$ such that $\mathrm{Z}\left(\mathrm{Q}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \mathrm{Z}\left(\mathrm{Q}_{3}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Let Γ be the graph of $g(x)=\mathrm{Q}_{2}+\mathrm{Q}_{3}+\ldots$ modified suitably
- Let $P_{1}=y, P_{2}=y-Q_{2}, P_{3}=y-\left(Q_{2}+Q_{3}\right), \ldots$

Proof of Existence of Pathologies - Key Ideas

- Recall we need definable Γ and polynomials P_{1}, P_{2}, \ldots s.t. $\Gamma \cap \mathrm{Z}\left(\mathrm{P}_{1}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Using Seifert's theorem, pick suitably $\left(\mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots\right)$ such that $\mathrm{Z}\left(\mathrm{Q}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \mathrm{Z}\left(\mathrm{Q}_{3}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Let Γ be the graph of $g(x)=\mathrm{Q}_{2}+\mathrm{Q}_{3}+\ldots$ modified suitably
- Let $P_{1}=y, P_{2}=y-Q_{2}, P_{3}=y-\left(Q_{2}+Q_{3}\right), \ldots$
> Notice

$$
\nabla \Gamma \cap Z\left(P_{k}\right)=Q_{k+1}+\overbrace{\sum_{j \geqslant k+2} Q_{j}}^{\text {residual }}=0
$$

Proof of Existence of Pathologies - Key Ideas

- Recall we need definable Γ and polynomials P_{1}, P_{2}, \ldots s.t. $\Gamma \cap \mathrm{Z}\left(\mathrm{P}_{1}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
- Using Seifert's theorem, pick suitably $\left(\mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots\right)$ such that $\mathrm{Z}\left(\mathrm{Q}_{2}\right) \approx \mathrm{Z}_{\mathrm{d}_{1}}, \mathrm{Z}\left(\mathrm{Q}_{3}\right) \approx \mathrm{Z}_{\mathrm{d}_{2}}, \ldots$
\checkmark Let Γ be the graph of $g(x)=\mathrm{Q}_{2}+\mathrm{Q}_{3}+\ldots$ modified suitably
- Let $P_{1}=y, P_{2}=y-Q_{2}, P_{3}=y-\left(Q_{2}+Q_{3}\right), \ldots$
- Notice
$\nabla \Gamma \cap Z\left(P_{k}\right)=Q_{k+1}+\overbrace{\sum_{j \geqslant k+2} Q_{j}}^{\text {residual }}=0$
- By Thom's Isotopy lemma, if $\left\|\sum_{j \geqslant k+2} Q_{j}\right\|_{C^{1}}$ is bounded, $\mathrm{Z}_{\mathrm{d}_{\mathrm{k}}} \approx \mathrm{Z}\left(\mathrm{Q}_{\mathrm{k}+1}\right) \approx \Gamma \cap \mathrm{Z}\left(\mathrm{P}_{\mathrm{k}}\right)$

Definable Flypersurfaces \cap Algebraic Darieties

- This says that upto extracting subsequences, the intersection of Γ with a hypersurface can be arbitrarily complicated

Definable Heypersurfaces \cap Algebraic Darieties

- This says that upto extracting subsequences, the intersection of Γ with a hypersurface can be arbitrarily complicated
- Generalizes a result of Gwoździewicz et al. (1999)

Definable Heypersurfaces \cap Algebraic Darieties

- This says that upto extracting subsequences, the intersection of Γ with a hypersurface can be arbitrarily complicated
- Generalizes a result of Gwoździewicz et al. (1999)
- Recall that an algebraic hypersurface γ enters at most $\sim \operatorname{deg}(P)^{n-1}$ cells induced by P

Definable Heypersurfaces \cap Algebraic Darieties

- This says that upto extracting subsequences, the intersection of Γ with a hypersurface can be arbitrarily complicated
- Generalizes a result of Gwoździewicz et al. (1999)
- Recall that an algebraic hypersurface γ enters at most $\sim \operatorname{deg}(P)^{n-1}$ cells induced by P
- Our results shows that such a bound is not possible if we have a definable hypersurface

Definable Heypersurfaces \cap Algebraic Darieties

- This says that upto extracting subsequences, the intersection of Γ with a hypersurface can be arbitrarily complicated
- Generalizes a result of Gwoździewicz et al. (1999)
- Recall that an algebraic hypersurface γ enters at most $\sim \operatorname{deg}(P)^{n-1}$ cells induced by P
- Our results shows that such a bound is not possible if we have a definable hypersurface

Question
How 'common' is the pathological case? What does 'common' even mean?

Distribution on Space of Polynomials

- We apply a natural Gaussian measure on the space of polynomials called Kostlan measure

Distribution on Space of Polynomials

- We apply a natural Gaussian measure on the space of polynomials called Kostlan measure
- We write $\mathrm{P} \sim \operatorname{KOS}(\mathrm{n}, \mathrm{d})$ if

$$
\begin{gathered}
P\left(X_{0}, \ldots, X_{n}\right)=\sum_{\substack{\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)}} \xi_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}, \\
\text { where } \xi_{\alpha} \sim \mathcal{N}\left(0, \frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}\right) \text { are independent }
\end{gathered}
$$

Distribution on Space of Polynomials

- We apply a natural Gaussian measure on the space of polynomials called Kostlan measure
- We write $\mathrm{P} \sim \operatorname{KOS}(\mathrm{n}, \mathrm{d})$ if

where $\xi_{\alpha} \sim \mathcal{N}\left(0, \frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}\right)$ are independent
- Distribution is orthogonally-invariant, i.e for any matrix L satisfying $L^{\top} L=L L L^{\top}=I$,

$$
P(X) \equiv_{\text {dist. }} P(L X)
$$

Average Topology of Definable Hypersurfaces on Algebraic Sets

Theorem (Measure of Pathologies - Basu-Lerario-N (2018) ${ }^{2}$) Let $\Gamma \subset \mathbb{R P}^{n}$ be a regular, compact semi-analytic hypersurface, and let p be a random Kostlan polynomial of degree D . Then there exists a constant c_{Γ} such that for every $0 \leqslant \mathrm{k} \leqslant \mathrm{n}-2$, for every $t>0$

$$
\mathbb{E}\left[\mathrm{b}_{\mathrm{k}}(\Gamma \cap \mathrm{Z}(\mathfrak{p}))\right]=\mathrm{c}_{\Gamma} \mathrm{D}^{n-1 / 2} .
$$

Proof Technique: Morse Theory + Kac-Rice Formula

[^1]
Toward O-minimal polynomial Partitioning?

- While our initial result is bad news for o-minimal polynomial partitioning, the average result gives some hope

Toward O-minimal Polynomial Partitioning?

- While our initial result is bad news for o-minimal polynomial partitioning, the average result gives some hope
- Specifically, for a definable hypersurface γ

$$
\mathbb{P}\left[b_{0}(\gamma \cap Z(p)) \geqslant D^{n-1}\right] \leqslant \frac{c_{\Gamma}}{D^{n-1 / 2}}
$$

Toward O-minimal Polynomial Partitioning?

- While our initial result is bad news for o-minimal polynomial partitioning, the average result gives some hope
- Specifically, for a definable hypersurface γ

$$
\mathbb{P}\left[b_{0}(\gamma \cap \mathrm{Z}(\mathrm{p})) \geqslant \mathrm{D}^{\mathrm{n}-1}\right] \leqslant \frac{\mathrm{c}_{\Gamma}}{\mathrm{D}^{n-1 / 2}}
$$

Future Questions:

- Ambitiously, can we can prove that the measure of partitioning polynomials for a given Γ is large, then there exists a partitioning polynomial that is not pathological for any Γ ?
- Instead of algebraic partitioning hypersurfaces, can we use definable partitioning hypersurfaces?

References

S. Barone and S. Basu. Refined bounds on the number of connected components of sign conditions on a variety. Discrete \& Computational Geometry, 47(3):577-597, 2012.
S. Barone and S. Basu. On a real analog of bezout inequality and the number of connected components of sign conditions. Proceedings of the London Mathematical Society, 112(1):115-145, 2016.
S. Basu and O. E. Raz. An o-minimal szemerédi-trotter theorem. The Quarterly Journal of Mathematics, 69(1):223-239, 2017.
S. Basu, A. Lerario, and A. Natarajan. Zeroes of polynomials on definable hypersurfaces: pathologies exist, but they are rare. Quarterly Journal of Mathematics (to appear), 2018.
A. Chernikov and S. Starchenko. Regularity lemma for distal structures. arXiv preprint arXiv:1507.01482, 2015.
A. Gabrielov and N. Vorobjov. On topological lower bounds for algebraic computation trees. Foundations of Computational Mathematics, 17(1):61-72, 2017.
L. Guth. Polynomial partitioning for a set of varieties. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 159, pages 459-469. Cambridge University Press, 2015.
L. Guth and N. H. Katz. Algebraic methods in discrete analogs of the kakeya problem. Advances in Mathematics, 225(5):2828-2839, 2010.
L. Guth and N. H. Katz. On the erdős distinct distances problem in the plane. Annals of Mathematics, pages 155-190, 2015.
J. Gwoździewicz, K. Kurdyka, and A. Parusiński. On the number of solutions of an algebraic equation on the curve $y=e^{x}+\sin x, x>0$, and a consequence for o-minimal structures. Proceedings of the American Mathematical Society, 127(4):1057-1064, 1999.
J. Milnor. On the betti numbers of real varieties. Proceedings of the American Mathematical Society, 15(2):275-280, 1964.
O. Oleinik and I. Petrovsky. On the topology of real algebraic hypersurfaces. Izv. Acad. Nauk SSSR, 13: 389-402, 1949.
A. Pillay and C. Steinhorn. Definable sets in ordered structures. i. Transactions of the American Mathematical Society, 295(2):565-592, 1986.
A. Pillay and C. Steinhorn. Definable sets in ordered structures. iif. Transactions of the American Mathematical Society, 309(2):469-476, 1988.
H. Seifert. Algebraische Approximation von Mannigfaltigkeiten. Math. Z., 41(1):1-17, 1936. ISSN 0025-5874. URL https://doi.org/10.1007/BF01180402.
M. Sharir. Computational geometry column 65. ACM SIGACT News, 48(2):68-85, 2017.
J. Solymosi and T. Tao. An incidence theorem in higher dimensions. Discrete \& Computational Geomètry, 48(2):255-280, 2012.
R. Thom. Sur l'homologie des variétés algébriques réelles. Differential and combinatorial topology, pages 255-265, 1965.
A. C.-C. Yao. Decision tree complexity and betti numbers. Journal of Computer and System Sciences, 55(1):36-43, 1997.

[^0]: ${ }^{1}$ To appear in Quarterly Journal of Mathematics, 2019

[^1]: ${ }^{2}$ To appear in Quarterly Journal of Mathematics, 2019

