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» Guth-Katz [2010, 2015] introduced techniques from algebraic
geometry to solve problems the joints problem and the Erd8s
distinct distances problem

\

» One technique, called polynomial partitioning, has helped solve
problems in combinatorial and computational geometry (e.g.
incidences, cycle elimination)

» Polynomial partitioning is a divide-and-conquer technique -
simple and works well in any dimension
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» Semialgebraic set: A set S C R™ that is a finite Boolean
combination of sets defined by polynomial inequalities:

x e R™|P(x) > 0}

(-2+y2-1) 20} S INXx>yK {xX®+y2<2}A{y—x24V-{x—y<4})
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» Dimension of semialgebraic set (S): Largest integer d such
that there is an embedding of [0, 119in S

\

» 0-dimensional ase

» 2-dimensional @ ‘
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Let P € R[Xq,..., Xn] be of degree at most D:

\» P induces at most ~ D™ cells (Oleinik-Petrovsky [1949],
Milnor [1964], Thom [1965])

» A k-dimensional algebraic set intersects at most ~ D¥ cells of
CC(P) (Barone-Basu [2012])

» We have |I'| no. of algebraic sets, so there are at most
~ [T x D¥ algebraic-set-cell intersections

BEEDE ; o
» There are most D™ cells, so ~ % denotes equipartition

See survey by Sharir [2017] for wide range of applications
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O-minimal structure $ on R: 8 = (Sn)nen: Sn C 2B*, satisfying
v All algebraic subsets of R™ are in 8y,

» 8, is closed under complementation, finite unions &
intersections

» fAc8,, Be8n, then AXxBeEShim

» If TT: R™1 — R™ is the projection on the first n coordinates,
A € 8ny1, then TI(A) € 8y,

3¢ Elements of $; are precisely finite unions of points and
intervals
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» Semi-algebraic sets in R™ form an o-minimal structure

\» Introduced by Pillay-Steinhorn [1986, 1988]; axiomatic
generalization of semi-algebraic geometry

» Other examples - R with exp function (e.g. x> +eXT2Y < 0),
restricted analytic functions (e.g. sin x2=0on [-1, 1]}, ete

» Sets in an o-minimal stucture have tame topology

Question

Can we generalize polynomial partitioning to the o-minimal
setting?
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Bounds on To;ooﬁogy of Semi—/ﬂgebmic Sets

All pol‘ynomials are from R[Xq, ..., X

\» Bezout theorem - If intersection of Z(P1), ..., Z(Py) is finite,

< deg(P1) .. .deg(Pn)

ﬁ Z{P. )
Ty

» Real Analogue of Bezout theorem (Barone-Basu [2016]):

,Sn“dl...dn

) Z(Ps,R)
n—1

» Connected Components on algebraic set (Barone-Basu [2012]):
Given deg(Q) < deg(P), dim(Z(Q)) = k, then Z(Q) enters at
most ~ deg(P)¥ cells in CC(P)



O-minimal Combinatorial G@omeﬁg

» Such topological bounds are important in incidence questions
(e.g. Solymosi-Tao [2012])



O-minimal Combinatorial G@omeﬁg

» Such topological bounds are important in incidence questions
(e.g. Solymosi-Tao [2012])

'» O-minimal incidence questions - active area of research (e.g.
Chernikov-Starchenko [2015], Basu-Raz [2017])



O-minimal Combinatorial G@omeﬁg

» Such topological bounds are important in incidence questions
(e.g. Solymosi-Tao [2012])

'» O-minimal incidence questions - active area of research (e.g.
Chernikov-Starchenko [2015], Basu-Raz [2017])

» Additional Defintions:

» Definable Set: Element of 8, (recall 8§ = (8;)n~0 0-minimal)



O-minimal Combinatorial Geomeﬁy

» Such topological bounds are important in incidence questions
(e.g. Solymosi-Tao [2012])

'» O-minimal incidence questions - active area of research (e.g.
Chernikov-Starchenko [2015], Basu-Raz [2017])

» Additional Defintions:

» Definable Set: Element of 8, (recall 8§ = (8;)n~0 0-minimal)

» Hypersurface: Algebraic Set in R™ with dimension n — 1.



O-minimal Combinatorial G@omeﬁg

» Such topological bounds are important in incidence questions
(e.g. Solymosi-Tao [2012])

'» O-minimal incidence questions - active area of research (e.g.
Chernikov-Starchenko [2015], Basu-Raz [2017])

» Additional Defintions:

» Definable Set: Element of 8, (recall 8§ = (8;)n~0 0-minimal)
» Hypersurface: Algebraic Set in R™ with dimension n — 1.
Question

Given a definable hypersurface y, and a degree D polynomial
P e R[Xj,...\ Xnl, how many cells induced by P does y enter?




%yologica( prdimincwi@s

» Diffeomorphism: Bijective function 1 that is bi-differentiable

\



%)oological prdiminari@s

» Diffeomorphism: Bijective function 1 that is bi-differentiable

'» Ambient diffeotopy: For manifolds a C A, b C B, we write
(A,a) ~ (B,b)

if there exists a diffeomorphism 1 : A — B, and {(a) =b



%)oological prdiminaries

» Diffeomorphism: Bijective function 1 that is bi-differentiable

\ A ; :

'» Ambient diffeotopy: For manifolds a g A,b C B, we write
(A,a)~ (B,b)
- if there exists a diffeomorphism P : A — B, and {p(a) =b
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Betti NMumbers

» Betti numbers: The k" Betti number by (X) of a topological
manifold X represents the rank of the k'™ singular
(co)homology group of X

\

» Intuitively, by (X) denotes the number of k-dimensional holes
in X

» bo(X)-= #number of connected components
» b;(X) = Fone-dimensional or circular holes

» b, (X) = f£two-dimensional voids or cavities, etc.
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w}ty Betti Numbers?

\» Betti numbers are invariant under diffeomorphism (C
homeomorphism C homotopy equivalence)

» They offer a measure of complexity - Height of algebraic
computation tree for membership in semialgebraic set is lower
bounded in terms of the Betti numbers (Yao [1997], Gabrielov
and Vorobjov [2017])



J donut like this )of(@.’

Object bo s Bo  Bixs

000D 7 | .
ool . = .




@@ﬁnab(@ }ny@rsurfaces N Varicties

Informal Theorem

You can make the Betti numbers of the intersection of a definable
hypersurface and an algebraic set arbitrarily large.

1To appear in Quarterly Journal of Mathematics, 2019



D@ﬁnab(@ }ny@rsurfaces N Varicties

Informal Theorem

You can make the Betti numbers of the intersection of a definable
hypersurface and an algebraic set arbitrarily large.

Theorem (Existence of Pathologies - Basu-Lerario-N (2018)?!)

Let {Zq}aen be a sequence of smooth, compact hypersurfaces in
R™1. There exists a regular, compact, semianalytic hypersurface
' C RP™, adisk D C T, and a sequence {pm}men of homogeneous
polynomials with deg(pm) = dm such that the intersection

Z(pm) NT is stable and:

D, Z(pgi) N D) ~ (R*™L,Z4.) for all mMEN,

1To appear in Quarterly Journal of Mathematics, 2019
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Theorem (Thom's Isotopy Lemma)

Suppose for a disk D C R™1, a regular hypersurface Z(f),
(D,DNZ(f)) ~ (R, Z). There exists & = 5(f) > 0 such that
for any regular function h: D — R with ||h|/c1 <9,

(D.DNZHE+Lh]) ¢ (RM#F42)

Theorem (Seifert [1936])

Given a regular, compact hypersurface Z C D C R™1, there exists
a polynomial q : R™! — R such that Z(q) is regular and

(D, Z(4)} ~ (R™5Z].
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» Recall we need definable T and polynomials Py, Ps,... s.t.
B4 Z(Pl) ~ Zdl, P Z(Pz) = ng:

» Using Seifert’s theorem, pick suitably (Qz, Qs, ...) such that
Vo)~  Z(Qs)=Fa. . .

» Let I" be the graph of g(x) = Q2 + Q3 + ... modified suitably
» Let P =, P> :y—Qz, P3 :y—(Q2+Q3),

» Notice

residual
e

» TNZ(P)=Qii+ Y Q=0
j>k+2

» By Thom's Isotopy lemma, if || 3_;5, ,» Qjl[c: is bounded, W
de ~ Z(Qk+1) ~[¥m Z(Pk)
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» This says that upto extracting subsequences, the intersection
of I with a hypersurface can be arbitrarily complicated

» Generalizes a result of Gwozdziewicz et al. (1999)

» Recall that an algebraic hypersurface y enters at most
~ deg(P)™ ! cells induced by P

» Our results shows that such a bound is not possible if we have
a definable hypersurface

Question

How ‘common” is the pathological case? What does ‘common’
even mean?
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Distribution on S}aace of polynomials
» We apply a natural Gaussian measure on the space of
. polynomials called Kostlan measure

» We write P ~ KOS(n, d) if
P(XO,...,XHJ it Z é‘WXE)XO"'XILTHJ

where £, ~ N (O, ﬁ'an,) are independent
» Distribution is orthogonally-invariant, i.e for any matrix L

satisfying LTL = LLT =1,
P(X) =i P(LA)



/év@mgc %yology of Definable U{y)awsurfaces
on ;‘Hgdmu‘c Sets

\

Theorem (Measure of Pathologies - Basu-Lerario-N (2018)?)

Let I' C RPP™ be a regular, compact semi-analytic hypersurface, and
let p be a random Kostlan polynomial of degree D. Then there
exists a constant cr such that for every 0 < k < n — 2, for every
0

E b (TN Z(p))' = crD™ /4
Proof Technique: Morse Theory + Kac-Rice Formula

2To appear in Quarterly Journal of Mathematics, 2019



Toward O-minimal polynomial parfifioning.z

» While our initial result is bad news for o-minimal polynomial
partitioning, the average result gives some hope

\



Toward O-minimal polynomial parfifioning.z

» While our initial result is bad news for o-minimal polynomial
partitioning, the average result gives some hope

» Specifically, for a definable hypersurface y

i (¢
P [bo(y N Z(p) > D" < =




Toward O-minimal polynomiaﬁ parfifioning.z

» While our initial result is bad news for o-minimal polynomial
,  partitioning, the average result gives some hope

» Specifically, for a definable hypersurface y

it Cc
P [bo(YﬂZ(P)) =0 1] < ﬁ

Future Questions:

» Ambitiously, can we can prove that the measure of partitioning
polynomials for a given I is large, then there exists a
partitioning polynomial that is not pathological for any I'?

» Instead of algebraic partitioning hypersurfaces, can we use
definable partitioning hypersurfaces?
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