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Algebraic Techniques in Combinatorial Geometry

I Guth-Katz [2010, 2015] introduced techniques from algebraic
geometry to solve problems the joints problem and the Erd®s
distinct distances problem

I One technique, called polynomial partitioning, has helped solve
problems in combinatorial and computational geometry (e.g.
incidences, cycle elimination)

I Polynomial partitioning is a divide-and-conquer technique -
simple and works well in any dimension



Algebraic Techniques in Combinatorial Geometry

I Guth-Katz [2010, 2015] introduced techniques from algebraic
geometry to solve problems the joints problem and the Erd®s
distinct distances problem

I One technique, called polynomial partitioning, has helped solve
problems in combinatorial and computational geometry (e.g.
incidences, cycle elimination)

I Polynomial partitioning is a divide-and-conquer technique -
simple and works well in any dimension



Algebraic Techniques in Combinatorial Geometry

I Guth-Katz [2010, 2015] introduced techniques from algebraic
geometry to solve problems the joints problem and the Erd®s
distinct distances problem

I One technique, called polynomial partitioning, has helped solve
problems in combinatorial and computational geometry (e.g.
incidences, cycle elimination)

I Polynomial partitioning is a divide-and-conquer technique -
simple and works well in any dimension



Basic Algebro-Geometric Definitions
I Algebraic Set: The locus of common zeros of {P1, . . . ,Ps},
Pi ∈ R[X1, . . . ,Xn], i.e.

Z(P1, . . . ,Ps) := {x ∈ Rn |P1(x) = . . . = Ps(x) = 0}

Z(x2 + y2 − 1) Z(y− x2)

I Semialgebraic set: A set S ⊆ Rn that is a �nite Boolean
combination of sets de�ned by polynomial inequalities:

{x ∈ Rn |P(x) > 0}

{−(x2 + y2 − 1) > 0} {y > x} ∧ {x > y}
{
x2 + y2 6 2

}
∧ ({y− x > 4} ∨¬{x− y 6 4})
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Basic Algebro-Geometric Definitions

I Dimension of semialgebraic set (S): Largest integer d such
that there is an embedding of [0, 1]d in S

I 0-dimensional

I 1-dimensional

I 2-dimensional
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Cells Induced by a Polynomial

I Cells induced by a polynomial (P): Connected components of
the complement of Z(P), denoted CC(P)
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Polynomial Partitioning

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a �nite set of k-dimensional algebraic sets in Rn. For any
D > 1, there is a polynomial P of degree D, each cell induced by

Z(P) intersects at most ∼
|Γ |

Dn−k
algebraic sets of Γ .
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Understanding Polynomial Partitioning

Let P ∈ R[X1, . . . ,Xn] be of degree at most D:

I P induces at most ∼ Dn cells (Oleinik-Petrovsky [1949],
Milnor [1964], Thom [1965])

I A k-dimensional algebraic set intersects at most ∼ Dk cells of
CC(P) (Barone-Basu [2012])

I We have |Γ | no. of algebraic sets, so there are at most
∼ |Γ |×Dk algebraic-set-cell intersections

I There are most Dn cells, so ∼
|Γ |×Dk
Dn denotes equipartition

See survey by Sharir [2017] for wide range of applications
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O-Minimal Structures
O-minimal structure S on R: S = (Sn)n∈N, Sn ⊆ 2R

n
, satisfying

I All algebraic subsets of Rn are in Sn

I Sn is closed under complementation, �nite unions &
intersections

I If A ∈ Sn, B ∈ Sm, then A× B ∈ Sn+m

I If Π : Rn+1 → Rn is the projection on the �rst n coordinates,
A ∈ Sn+1, then Π(A) ∈ Sn

9 Elements of S1 are precisely �nite unions of points and
intervals
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Why O-Minimal Structures?

I Semi-algebraic sets in Rn form an o-minimal structure

I Introduced by Pillay-Steinhorn [1986, 1988]; axiomatic
generalization of semi-algebraic geometry

I Other examples - R with exp function (e.g. x3 + ex+2y 6 0),
restricted analytic functions (e.g. sin x2 = 0 on [−1, 1]), etc.

I Sets in an o-minimal stucture have tame topology

Question
Can we generalize polynomial partitioning to the o-minimal

setting?
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Bounds on Topology of Semi-Algebraic Sets
All polynomials are from R[X1, . . . ,Xn]:

I Bezout theorem - If intersection of Z(P1), . . . ,Z(Pn) is �nite,∣∣∣∣∣
n⋂
i=1

Z(Pi,C)

∣∣∣∣∣ 6 deg(P1) . . . deg(Pn)

I Real Analogue of Bezout theorem (Barone-Basu [2016]):∣∣∣∣∣
n⋂
i=1

Z(Pi,R)

∣∣∣∣∣ . nnd1 . . .dn

I Connected Components on algebraic set (Barone-Basu [2012]):
Given deg(Q)� deg(P), dim(Z(Q)) = k, then Z(Q) enters at
most ∼ deg(P)k cells in CC(P)
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O-minimal Combinatorial Geometry
I Such topological bounds are important in incidence questions

(e.g. Solymosi-Tao [2012])

I O-minimal incidence questions - active area of research (e.g.
Chernikov-Starchenko [2015], Basu-Raz [2017])

I Additional De�ntions:

I De�nable Set: Element of Sn (recall S = (Sn)n>0 o-minimal)

I Hypersurface: Algebraic Set in Rn with dimension n− 1.

Question
Given a de�nable hypersurface γ, and a degree D polynomial

P ∈ R[X1, . . . ,Xn], how many cells induced by P does γ enter?
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Topological Preliminaries

I Di�eomorphism: Bijective function ψ that is bi-di�erentiable

I Ambient di�eotopy: For manifolds a ⊆ A,b ⊆ B, we write
(A,a) ∼ (B,b)

if there exists a di�eomorphism ψ : A→ B, and ψ(a) = b

a

A
bB

ψ
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Betti Numbers
I Betti numbers: The kth Betti number bk(X) of a topological

manifold X represents the rank of the kth singular
(co)homology group of X

I Intuitively, bk(X) denotes the number of k-dimensional holes
in X

I b0(X) = #number of connected components

I b1(X) = #one-dimensional or circular holes

I b2(X) = #two-dimensional voids or cavities, etc.
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Betti Numbers - Examples

Object b0 b1 b2 bi>3

1 0 0 0

5 0 0 0

1 1 0 0
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1 0 1 0

1 2 1 0
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Why Betti Numbers?

I Betti numbers are invariant under di�eomorphism (⊆
homeomorphism ⊆ homotopy equivalence)

I They o�er a measure of complexity - Height of algebraic
computation tree for membership in semialgebraic set is lower
bounded in terms of the Betti numbers (Yao [1997], Gabrielov
and Vorobjov [2017])
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I donut like this joke!

Object β0 β1 β2 βi>3

1 2 1 0

1 2 1 0



Definable Hypersurfaces ∩ Varieties

Informal Theorem

You can make the Betti numbers of the intersection of a de�nable

hypersurface and an algebraic set arbitrarily large.

Theorem (Existence of Pathologies - Basu-Lerario-N (2018)1)

Let {Zd}d∈N be a sequence of smooth, compact hypersurfaces in

Rn−1. There exists a regular, compact, semianalytic hypersurface

Γ ⊂ RPn, a disk D ⊂ Γ , and a sequence {pm}m∈N of homogeneous

polynomials with deg(pm) = dm such that the intersection

Z(pm) ∩ Γ is stable and:

(D,Z(pm) ∩D) ∼ (Rn−1,Zdm) for all m ∈ N.

1To appear in Quarterly Journal of Mathematics, 2019
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Proof of Existence of Pathologies - Tools

+ =

Theorem (Thom's Isotopy Lemma)

Suppose for a disk D ⊂ Rn−1, a regular hypersurface Z(f),
(D,D ∩ Z(f)) ∼ (Rn−1,Z). There exists δ = δ(f) > 0 such that

for any regular function h : D→ R with ‖h‖C1 6 δ,

(D,D ∩ Z(f+ h)) ∼ (Rn−1,Z).

Theorem (Seifert [1936])

Given a regular, compact hypersurface Z ⊂ D ⊂ Rn−1, there exists

a polynomial q : Rn−1 → R such that Z(q) is regular and

(D,Z(q)) ∼ (Rn−1,Z).
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Proof of Existence of Pathologies - Key Ideas
I Recall we need de�nable Γ and polynomials P1,P2,... s.t.
Γ ∩ Z(P1) ≈ Zd1 , Γ ∩ Z(P2) ≈ Zd2 , ...

I Using Seifert's theorem, pick suitably (Q2,Q3, . . .) such that
Z(Q2) ≈ Zd1 , Z(Q3) ≈ Zd2 , ...

I Let Γ be the graph of g(x) = Q2 +Q3 + . . . modi�ed suitably

I Let P1 = y, P2 = y−Q2, P3 = y− (Q2 +Q3), ...

I Notice

I Γ ∩ Z(Pk) ≡ Qk+1 +

residual︷ ︸︸ ︷∑
j>k+2

Qj = 0

I By Thom's Isotopy lemma, if ‖
∑
j>k+2

Qj‖C1 is bounded,
Zdk
≈ Z(Qk+1) ≈ Γ ∩ Z(Pk)

�
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Definable Hypersurfaces ∩ Algebraic Varieties

I This says that upto extracting subsequences, the intersection
of Γ with a hypersurface can be arbitrarily complicated

I Generalizes a result of Gwo¹dziewicz et al. (1999)

I Recall that an algebraic hypersurface γ enters at most
∼ deg(P)n−1 cells induced by P

I Our results shows that such a bound is not possible if we have
a de�nable hypersurface

Question
How `common' is the pathological case? What does `common'

even mean?
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Distribution on Space of Polynomials

I We apply a natural Gaussian measure on the space of
polynomials called Kostlan measure

I We write P ∼ KOS(n,d) if

P(X0, . . . ,Xn) =
∑

α=(α0,...,αn)∑n
i=0αi=d

ξαx
α0
0 . . . xαnn ,

where ξα ∼ N
(
0, d!
α0!...αn!

)
are independent

I Distribution is orthogonally-invariant, i.e for any matrix L
satisfying LᵀL = LLᵀ = I,

P(X) ≡dist. P(LX)
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Average Topology of Definable Hypersurfaces
on Algebraic Sets

Theorem (Measure of Pathologies - Basu-Lerario-N (2018)2)

Let Γ ⊂ RPn be a regular, compact semi-analytic hypersurface, and

let p be a random Kostlan polynomial of degree D. Then there

exists a constant cΓ such that for every 0 6 k 6 n− 2, for every
t > 0

E [bk(Γ ∩ Z(p))] = cΓD
n−1/2.

Proof Technique: Morse Theory + Kac-Rice Formula

2To appear in Quarterly Journal of Mathematics, 2019



Toward O-minimal Polynomial Partitioning?

I While our initial result is bad news for o-minimal polynomial
partitioning, the average result gives some hope

I Speci�cally, for a de�nable hypersurface γ

P
[
b0(γ ∩ Z(p)) > Dn−1

]
6

cΓ

Dn−1/2

Future Questions:

I Ambitiously, can we can prove that the measure of partitioning
polynomials for a given Γ is large, then there exists a
partitioning polynomial that is not pathological for any Γ?

I Instead of algebraic partitioning hypersurfaces, can we use
de�nable partitioning hypersurfaces?
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