Partitioning Theorems for Sets of Semi-Pfaffian Sets, with Applications

Abhiram Natarajan

Collaborators: Prof. Martin Lotz (Univ. of Warwick), Prof. Nicolai Vorobjov (Univ. of Bath) Real Algebraic Geometry

► Real Algebraic Set: The set of real zeros of polynomials $P_1, \ldots, P_s \in \mathbb{R}[X_1, \ldots, X_n]$ $Z(P_1, \ldots, P_s) := \{x \in \mathbb{R}^n \mid P_1(x) = \ldots = P_s(x) = 0\}$ Real Algebraic Geometry
 • Real Algebraic Set: The set of real zeros of polynomials
 $P_1, \ldots, P_s \in \mathbb{R}[X_1, \ldots, X_n]$ $Z(P_1, \ldots, P_s) := \{x \in \mathbb{R}^n | P_1(x) = \ldots = P_s(x) = 0\}$ $Z(x^2 + y^2 - 1) = Z(y - x^2)$ A

Real Algebraic Geometry

► Real Algebraic Set: The set of real zeros of polynomials $P_1, \ldots, P_s \in \mathbb{R}[X_1, \ldots, X_n]$ $Z(P_1, \ldots, P_s) := \{x \in \mathbb{R}^n \mid P_1(x) = \ldots = P_s(x) = 0\}$ $Z(x^2 + y^2 - 1) = Z(y - x^2)$

Semialgebraic set: A set S ⊆ ℝⁿ that is a finite Boolean combination of sets defined by polynomial inequalities: {x ∈ ℝⁿ | P(x) ≥ 0}

Real Algebraic Geometry

► Real Algebraic Set: The set of real zeros of polynomials $P_1, \ldots, P_s \in \mathbb{R}[X_1, \ldots, X_n]$ $Z(P_1, \ldots, P_s) := \{x \in \mathbb{R}^n \mid P_1(x) = \ldots = P_s(x) = 0\}$ $Z(x^2 + y^2 - 1) = Z(y - x^2)$

Semialgebraic set: A set S ⊆ ℝⁿ that is a finite Boolean combination of sets defined by polynomial inequalities: {x ∈ ℝⁿ | P(x) ≥ 0}

 $\{-(x^2+y^2-1) \geqslant 0\} \hspace{0.5cm} \{y \geqslant x\} \wedge \{x \geqslant y\} \hspace{0.5cm} \{x^2+y^2 \leqslant 2\} \wedge (\{y-x \geqslant 4\} \vee \neg \{x-y \leqslant 4\})$

Polynomial Method' in Combinatorics

 Incidence combinatorics studies combinatorial aspects of the intersections of geometric objects

Polynomial Method' in Combinatorics

 Incidence combinatorics studies combinatorial aspects of the intersections of geometric objects

Algebro-geometric techniques have been very effective

Polynomial Method' in Combinatorics

 Incidence combinatorics studies combinatorial aspects of the intersections of geometric objects

Algebro-geometric techniques have been very effective

 Technique called polynomial partitioning has helped solve several open problems in incidence geometry and other areas

Cells induced by poly. P: Connected components of $\mathbb{R}^n \setminus Z(P)$

 cc_1

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional semialgebraic sets in \mathbb{R}^n . For any $D \ge 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional semialgebraic sets in \mathbb{R}^n . For any $D \ge 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

a set Γ of 10 curves in \mathbb{R}^2

8

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional semialgebraic sets in \mathbb{R}^n . For any $D \ge 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

a set Γ of 10 curves in \mathbb{R}^2

partitioning polynomial induces 5 cells

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional semialgebraic sets in \mathbb{R}^n . For any $D \ge 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

each cell intersects only few curves from Γ

partitioning polynomial induces 5 cells

a set Γ of 10 curves in \mathbb{R}^2

Let $P \in \mathbb{R}[X_1, \dots, X_n]$ be of degree at most D:

Let $P \in \mathbb{R}[X_1, \dots, X_n]$ be of degree at most D:

 P induces at most ~ Dⁿ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])

Let $P \in \mathbb{R}[X_1, \dots, X_n]$ be of degree at most D:

- P induces at most ~ Dⁿ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])
- ► A k-dimensional algebraic set intersects at most ~ D^k cells of CC(P) (Barone-Basu [2012])

Let $P \in \mathbb{R}[X_1, \dots, X_n]$ be of degree at most D:

- P induces at most ~ Dⁿ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])
- ► A k-dimensional algebraic set intersects at most ~ D^k cells of CC(P) (Barone-Basu [2012])
- We have |Γ| no. of semialgebraic sets, so there are at most
 |Γ| × D^k Γ-cell intersections

Let $P \in \mathbb{R}[X_1, \dots, X_n]$ be of degree at most D:

- P induces at most ~ Dⁿ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])
- ► A k-dimensional algebraic set intersects at most ~ D^k cells of CC(P) (Barone-Basu [2012])
- We have |Γ| no. of semialgebraic sets, so there are at most
 |Γ| × D^k Γ-cell intersections

► There are most D^n cells, so ~ $\frac{|\Gamma| \times D^k}{D^n}$ denotes equipartition

Let $P \in \mathbb{R}[X_1, \dots, X_n]$ be of degree at most D:

- P induces at most ~ Dⁿ cells (Oleinik-Petrovsky [1949], Milnor [1964], Thom [1965])
- ► A k-dimensional algebraic set intersects at most ~ D^k cells of CC(P) (Barone-Basu [2012])
- We have |Γ| no. of semialgebraic sets, so there are at most
 |Γ| × D^k Γ-cell intersections

► There are most D^n cells, so $\sim \frac{|\Gamma| \times D^k}{D^n}$ denotes *equipartition* See survey by Kaplan et al. [2012] for a wide range of applications

▶ Incidence between point p and line l is when $p \in l$

▶ Incidence between point p and line l is when $p \in l$

Incidences between Three Points and Four Lines

▶ Incidence between point p and line l is when $p \in l$

Incidences between Three Points and Four Lines

▶ Incidence between point p and line l is when $p \in l$

Incidences between Three Points and Four Lines

 \blacktriangleright Incidence between point p and line l is when $p \in l$

Incidences between Three Points and Four Lines

▶ m points and n lines in \mathbb{R}^2 ; $\mathbb{O}(m^{2/3}n^{2/3} + m + n)$ incidences

Goal: given points \mathcal{P} and lines \mathcal{L} , count incidences $\mathfrak{I}(\mathcal{P}, \mathcal{L})$

Goal: given points \mathcal{P} and lines \mathcal{L} , count incidences $\mathfrak{I}(\mathcal{P}, \mathcal{L})$

 \blacktriangleright (weak bound) for each $x \in \mathcal{P}$, $\mathcal{L}_x :=$ lines only containing x

Goal: given points \mathfrak{P} and lines \mathcal{L} , count incidences $\mathfrak{I}(\mathfrak{P}, \mathcal{L})$

▶ (weak bound) for each $x \in \mathcal{P}$, $\mathcal{L}_x :=$ lines only containing x

▶ By definition: $\mathfrak{I}(\mathbf{x}, \mathcal{L}) \leq |\mathcal{P}| + |\mathcal{L}_{\mathbf{x}}|$

Goal: given points \mathfrak{P} and lines \mathcal{L} , count incidences $\mathfrak{I}(\mathfrak{P}, \mathcal{L})$

▶ (weak bound) for each $x \in \mathcal{P}$, $\mathcal{L}_x :=$ lines only containing x

▶ By definition: $\mathfrak{I}(x, \mathcal{L}) \leq |\mathcal{P}| + |\mathcal{L}_x|$

 $\blacktriangleright \ \mathfrak{I}(\mathcal{P},\mathcal{L}) \leqslant \sum_{\mathbf{x}\in\mathcal{P}} \mathfrak{I}(\mathbf{x},\mathcal{L}) = |\mathcal{P}|^2 + \sum_{\mathbf{x}\in\mathcal{P}} |\mathcal{L}_{\mathbf{x}}|$

Goal: given points \mathfrak{P} and lines \mathcal{L} , count incidences $\mathfrak{I}(\mathfrak{P}, \mathcal{L})$

▶ (weak bound) for each $x \in \mathcal{P}$, $\mathcal{L}_x :=$ lines only containing x

▶ By definition: $\mathfrak{I}(\mathbf{x}, \mathcal{L}) \leq |\mathcal{P}| + |\mathcal{L}_{\mathbf{x}}|$

 $\blacktriangleright \ \Im(\mathcal{P},\mathcal{L}) \leqslant \sum_{\mathbf{x} \in \mathcal{P}} \Im(\mathbf{x},\mathcal{L}) = |\mathcal{P}|^2 + \sum_{\mathbf{x} \in \mathcal{P}} |\mathcal{L}_{\mathbf{x}}|$

 $\triangleright \ \ \, \mathbb{J}(\mathcal{P},\mathcal{L}) \leqslant \min\{|\mathcal{P}|^2 + |\mathcal{L}|, |\mathcal{P}| + |\mathcal{L}|^2\}$
► Partition using poly. P of degree D; $\mathcal{P} = \bigcup_i \mathcal{P}_i \cup \mathcal{P}_{alg.}$ and $\mathcal{L} = \bigcup_i \mathcal{L}_i \cup \mathcal{L}_{alg.}$, and theorem gives $|\mathcal{P}_i| \leq \frac{|\mathcal{P}|}{D^2}$

► Partition using poly. P of degree D; $\mathcal{P} = \bigcup_i \mathcal{P}_i \cup \mathcal{P}_{alg.}$ and $\mathcal{L} = \bigcup_i \mathcal{L}_i \cup \mathcal{L}_{alg.}$, and theorem gives $|\mathcal{P}_i| \leq \frac{|\mathcal{P}|}{D^2}$

► (in cells) $\mathbb{I}(\bigcup_i \mathcal{P}_i, \bigcup_i \mathcal{L}_i) \leqslant \sum_i |\mathcal{L}_i| + |\mathcal{P}_i|^2 \leqslant |\mathcal{L}|D + |\mathcal{P}|^2 D^{-2}$

► Partition using poly. P of degree D; $\mathcal{P} = \bigcup_i \mathcal{P}_i \cup \mathcal{P}_{alg.}$ and $\mathcal{L} = \bigcup_i \mathcal{L}_i \cup \mathcal{L}_{alg.}$, and theorem gives $|\mathcal{P}_i| \leq \frac{|\mathcal{P}|}{D^2}$

▶ (in cells) $\mathbb{I}(\bigcup_i \mathcal{P}_i, \bigcup_i \mathcal{L}_i) \leqslant \sum_i |\mathcal{L}_i| + |\mathcal{P}_i|^2 \leqslant |\mathcal{L}|D + |\mathcal{P}|^2 D^{-2}$

► (using Bézout's theorem) $\mathcal{J}(\mathcal{P}_{alg}, \bigcup_i \mathcal{L}_i) \leq |\mathcal{L}|D$

► Partition using poly. P of degree D; $\mathcal{P} = \bigcup_i \mathcal{P}_i \cup \mathcal{P}_{alg.}$ and $\mathcal{L} = \bigcup_i \mathcal{L}_i \cup \mathcal{L}_{alg.}$, and theorem gives $|\mathcal{P}_i| \leq \frac{|\mathcal{P}|}{D^2}$

- $\blacktriangleright \text{ (in cells) } \mathbb{I}(\bigcup_i \mathcal{P}_i, \bigcup_i \mathcal{L}_i) \leqslant \sum_i |\mathcal{L}_i| + |\mathcal{P}_i|^2 \leqslant |\mathcal{L}| D + |\mathcal{P}|^2 D^{-2}$
- ► (using Bézout's theorem) $\mathcal{J}(\mathcal{P}_{alg}, \bigcup_i \mathcal{L}_i) \leq |\mathcal{L}|D$
- ► Z(P) can contain only D lines: $\Im(\mathcal{P}, \mathcal{L}_{alg}) \leq |\mathcal{P}| + D^2$

► Partition using poly. P of degree D; P = U_i P_i ∪ P_{alg} and L = U_i L_i ∪ L_{alg}, and theorem gives |P_i| ≤ |P|/D²

- $\blacktriangleright \text{ (in cells) } \mathbb{I}(\bigcup_{i} \mathcal{P}_{i}, \bigcup_{i} \mathcal{L}_{i}) \leqslant \sum_{i} |\mathcal{L}_{i}| + |\mathcal{P}_{i}|^{2} \leqslant |\mathcal{L}|D + |\mathcal{P}|^{2}D^{-2}$
- ► (using Bézout's theorem) $\mathcal{J}(\mathcal{P}_{alg}, \bigcup_i \mathcal{L}_i) \leq |\mathcal{L}|D$
- ► Z(P) can contain only D lines: $\mathcal{I}(\mathcal{P}, \mathcal{L}_{alg}) \leq |\mathcal{P}| + D^2$

► Set $D = \frac{m^{2/3}}{n^{1/3}}$ and sum up

► Partition using poly. P of degree D; $\mathcal{P} = \bigcup_i \mathcal{P}_i \cup \mathcal{P}_{alg.}$ and $\mathcal{L} = \bigcup_i \mathcal{L}_i \cup \mathcal{L}_{alg.}$, and theorem gives $|\mathcal{P}_i| \leq \frac{|\mathcal{P}|}{D^2}$

- ► (in cells) $\mathbb{I}(\bigcup_i \mathcal{P}_i, \bigcup_i \mathcal{L}_i) \leqslant \sum_i |\mathcal{L}_i| + |\mathcal{P}_i|^2 \leqslant |\mathcal{L}|D + |\mathcal{P}|^2 D^{-2}$
- ► (using Bézout's theorem) $\mathcal{J}(\mathcal{P}_{alg}, \bigcup_i \mathcal{L}_i) \leq |\mathcal{L}|D$
- ► Z(P) can contain only D lines: $\Im(\mathcal{P}, \mathcal{L}_{alg}) \leqslant |\mathcal{P}| + D^2$

► Set $D = \frac{m^{2/3}}{n^{1/3}}$ and sum up

Takeaway Polynomial partitioning and basic arguments worked!

Generalize Real Algebraic Geometry

 Semialgebraic sets possess tameness properties such as stratifiability, triangulability, etc.

Generalize Real Algebraic Geometry

 Semialgebraic sets possess tameness properties such as stratifiability, triangulability, etc.

...investigate classes of sets with the tame topological properties of semialgebraic sets... - Grothendieck, Esquisse d'un Programme

Generalize Real Algebraic Geometry

 Semialgebraic sets possess tameness properties such as stratifiability, triangulability, etc.

 ...investigate classes of sets with the tame topological properties of semialgebraic sets... - Grothendieck, Esquisse d'un Programme

 O-minimal geometry (geometry of definable sets) is an axiomatic generalization of real algebraic geometry

 O-minimal structure is a collection of sets satisfying tameness axioms

 O-minimal structure is a collection of sets satisfying tameness axioms

Semialgebraic sets in Rⁿ form an o-minimal structure

 O-minimal structure is a collection of sets satisfying tameness axioms

Semialgebraic sets in Rⁿ form an o-minimal structure

► Other examples - \mathbb{R} with exp function (e.g. $x^3 + e^{x+2y} = 0$), Pfaffian functions (e.g. $x^{2.31} - e^{e^y} = 0$)

 O-minimal structure is a collection of sets satisfying tameness axioms

 \blacktriangleright Semialgebraic sets in \mathbb{R}^n form an o-minimal structure

▶ Other examples - \mathbb{R} with exp function (e.g. $x^3 + e^{x+2y} = 0$), Pfaffian functions (e.g. $x^{2.31} - e^{e^y} = 0$)

 O-minimal incidence combinatorics is lagging behind algebraic incidence combinatorics

 O-minimal structure is a collection of sets satisfying tameness axioms

 \blacktriangleright Semialgebraic sets in \mathbb{R}^n form an o-minimal structure

▶ Other examples - \mathbb{R} with exp function (e.g. $x^3 + e^{x+2y} = 0$), Pfaffian functions (e.g. $x^{2.31} - e^{e^y} = 0$)

 O-minimal incidence combinatorics is lagging behind algebraic incidence combinatorics

Question

Can we generalize polynomial partitioning to the o-minimal setting? ... we make progress...

Pfaffian Functions

► Let $\mathcal{U} \subseteq \mathbb{R}^n$ be an open set. $\vec{f} = (f_1, \dots, f_r)$, $f_i \in \mathbb{C}^{\infty}(\mathcal{U})$ is a Pfaffian chain if there exist polys. $P_{i,j} \in \mathbb{R}[X_1, \dots, X_n, Y_1, \dots, Y_i]$ verifying $\frac{\partial f_i}{\partial x_i} = P_{i,j}(x, f_1(x), \dots, f_i(x))$

Pfaffian Functions

► Let $\mathcal{U} \subseteq \mathbb{R}^n$ be an open set. $\vec{f} = (f_1, \dots, f_r)$, $f_i \in \mathbb{C}^{\infty}(\mathcal{U})$ is a Pfaffian chain if there exist polys. $P_{i,j} \in \mathbb{R}[X_1, \dots, X_n, Y_1, \dots, Y_i]$ verifying $\frac{\partial f_i}{\partial x_i} = P_{i,j}(x, f_1(x), \dots, f_i(x))$

▶ $g : \mathbb{R}^n \to \mathbb{R}$ is a Pfaffian function w.r.t. \vec{f} if there exists polynomial $Q_g \in \mathbb{R}[X_1, \dots, X_n, Y_1, \dots, Y_r]$ such that $g(x) = Q_g(x, f_1(x), \dots, f_r(x))$

Pfaffian Functions

► Let $\mathcal{U} \subseteq \mathbb{R}^n$ be an open set. $\vec{f} = (f_1, \dots, f_r)$, $f_i \in \mathbb{C}^{\infty}(\mathcal{U})$ is a Pfaffian chain if there exist polys. $P_{i,j} \in \mathbb{R}[X_1, \dots, X_n, Y_1, \dots, Y_i]$ verifying $\frac{\partial f_i}{\partial x_i} = P_{i,j}(x, f_1(x), \dots, f_i(x))$

▶ $g : \mathbb{R}^n \to \mathbb{R}$ is a Pfaffian function w.r.t. \vec{f} if there exists polynomial $Q_g \in \mathbb{R}[X_1, \dots, X_n, Y_1, \dots, Y_r]$ such that $g(x) = Q_g(x, f_1(x), \dots, f_r(x))$

Pfaffian Functions - Examples

► A polynomial of degree D w.r.t. the empty chain; format is $(\alpha, D, 0)$ for any integer $\alpha > 0$.

Pfaffian Functions - Examples

A polynomial of degree D w.r.t. the empty chain; format is (α, D, 0) for any integer α > 0.

▶ $\vec{q} = (q_1, ..., q_r)$, where $q_i(x) = e^{q_{i-1}(x)}$, and $q_0(x) = ax$, is a Pfaffian chain of order r and chain-degree r. Consequently, any $P \in \mathbb{R}[X, e^{aX}, e^{e^{aX}}, ...]$ is a Pfaffian function w.r.t. \vec{q} .

Pfaffian Functions - Examples

A polynomial of degree D w.r.t. the empty chain; format is (α, D, 0) for any integer α > 0.

▶ $\vec{q} = (q_1, ..., q_r)$, where $q_i(x) = e^{q_{i-1}(x)}$, and $q_0(x) = ax$, is a Pfaffian chain of order r and chain-degree r. Consequently, any $P \in \mathbb{R}[X, e^{aX}, e^{e^{aX}}, ...]$ is a Pfaffian function w.r.t. \vec{q} .

▶ $\vec{q} = (\frac{1}{x}, \ln(x))$ is a Pfaffian chain on the domain $R \setminus \{0\}$; any $P \in \mathbb{R} [X, \frac{1}{x}, \ln(X)]$ is a Pfaffian function.

Pfaffian Functions – Examples

A polynomial of degree D w.r.t. the empty chain; format is (α, D, 0) for any integer α > 0.

▶ $\vec{q} = (q_1, ..., q_r)$, where $q_i(x) = e^{q_{i-1}(x)}$, and $q_0(x) = ax$, is a Pfaffian chain of order r and chain-degree r. Consequently, any $P \in \mathbb{R}[X, e^{aX}, e^{e^{aX}}, ...]$ is a Pfaffian function w.r.t. \vec{q} .

q = (¹/_x, ln(x)) is a Pfaffian chain on the domain R \ {0}; any P ∈ ℝ [X, ¹/_X, ln(X)] is a Pfaffian function.

▶ $\vec{q} = (\frac{1}{x}, x^m)$ for any $m \in \mathbb{R}$ is a Pfaffian chain; any $P \in \mathbb{R} [X, \frac{1}{x}, X^m]$ is a Pfaffian function w.r.t. \vec{q} .

Pfaffians

> Zero set of a Pfaffian function is called a Pfaffian set

Pfaffians

Zero set of a Pfaffian function is called a Pfaffian set

Locus of inequalities of Pfaffian functions is Semi-Pfaffian set

Pfaffians

Zero set of a Pfaffian function is called a Pfaffian set

Locus of inequalities of Pfaffian functions is Semi-Pfaffian set

The Pfaffian structure, i.e., the smallest collection of sets containing all semi-Pfaffian sets and that is stable under all structure operations, is an o-minimal structure.

Main Theorem

Theorem (Partitioning Pfaffians [Lotz-N-Vorobjov, 2024]) Let Γ be a collection of semi-Pfaffian sets in \mathbb{R}^n of dimension k, where each $\gamma \in \Gamma$ has order r.

1. For any $D \ge 1$, there is $P \in \mathbb{R}[X_1, ..., X_n]$ of degree D, such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k-r}}$ elements of Γ .

Main Theorem

Theorem (Partitioning Pfaffians [Lotz-N-Vorobjov, 2024]) Let Γ be a collection of semi-Pfaffian sets in \mathbb{R}^n of dimension k, where each $\gamma \in \Gamma$ has order r.

- 1. For any $D \ge 1$, there is $P \in \mathbb{R}[X_1, ..., X_n]$ of degree D, such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k-r}}$ elements of Γ .
- For any D ≥ 1, there is a Pfaffian function P' of degree D such that each cell induced by P intersects at most ^{|Γ|}
 elements of Γ.

Main Theorem

Theorem (Partitioning Pfaffians [Lotz-N-Vorobjov, 2024]) Let Γ be a collection of semi-Pfaffian sets in \mathbb{R}^n of dimension k, where each $\gamma \in \Gamma$ has order r.

- 1. For any $D \ge 1$, there is $P \in \mathbb{R}[X_1, ..., X_n]$ of degree D, such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k-r}}$ elements of Γ .
- 2. For any $D \ge 1$, there is a Pfaffian function P' of degree D such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

Takeaway

- 1. Generalization of Polynomial Partitioning to Pfaffians
- 2. New technique of Pfaffian Partitioning

Proof - Main Technical Step

the line intersects three cells induced by P

Proof – Main Technical Step

Z(P) cc₂ cc₃ cc₄ cc₅ cc₆

the line intersects three cells induced by P

• Poly. P of deg. D in n variables induces at most D^n cells

Proof – Main Technical Step

the line intersects three cells induced by P

 Poly. P of deg. D in n variables induces at most Dⁿ cells
 We show for a k-dimensional semi-Pfaffian set γ of order r γ intersects at most D^{k+r} cells induced by P

(Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves of order r in \mathbb{R}^2 : $\mathcal{O}(m^{\frac{2r+2}{2r+3}+\epsilon}n^{\frac{r+2}{2r+3}}+m+n)$ incidences

► (Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves of order r in R²: O(m^{2r+2}/_{2r+3} + εn^{r+2}/_{2r+3} + m + n) incidences

We also count joints between Pfaffian curves

► (Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves of order r in R²: O(m^{2r+2}/_{2r+3} + εn^{r+2}/_{2r+3} + m + n) incidences

We also count joints between Pfaffian curves

More applications possible

► (Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves of order r in R²: O(m^{2r+2}/_{2r+3} + εn^{r+2}/_{2r+3} + m + n) incidences

We also count joints between Pfaffian curves

More applications possible

 Our technique lends itself to generalizing to other o-minimal structures with caveat
Crucial Ingredient – Khovanskii's Theorem

Theorem ([Khovanskiĭ, 1991, §3.12, Corollary 5])

Let \vec{q} be a Pfaffian chain of order r and chain-degree α , where the functions in the Pfaffian chain depend only on $\xi \leq n$ variables. Let f_1, \ldots, f_n be Pfaffian functions on an open set $\mathcal{U} \subseteq \mathbb{R}^n$, where f_i is of degree β_i w.r.t. \vec{q} . The number of non-degenerate solutions of $\{x \in \mathcal{U} : f_1(x) = \ldots = f_n(x) = 0\}$ is bounded from above by $2^{\binom{r}{2}}\beta_1\ldots\beta_n (\min\{\xi,r\}\alpha+\beta_1+\ldots+\beta_n-n+1)^r$.

Crucial Ingredient – Khovanskii's Theorem

Theorem ([Khovanskiĭ, 1991, §3.12, Corollary 5])

Let \vec{q} be a Pfaffian chain of order r and chain-degree α , where the functions in the Pfaffian chain depend only on $\xi \leq n$ variables. Let f_1, \ldots, f_n be Pfaffian functions on an open set $\mathcal{U} \subseteq \mathbb{R}^n$, where f_i is of degree β_i w.r.t. \vec{q} . The number of non-degenerate solutions of $\{x \in \mathcal{U} : f_1(x) = \ldots = f_n(x) = 0\}$ is bounded from above by $2^{\binom{r}{2}}\beta_1 \ldots \beta_n (\min\{\xi, r\}\alpha + \beta_1 + \ldots + \beta_n - n + 1)^r$.

Takeaway

Bézout type theorem holds for Pfaffian sets.

Definable Hypersurfaces \cap Varieties

Theorem (Basu-Lerario-N 2018)

Let $\{Z_d\}_{d\in\mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1} . There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{RP}^n$, a disk $D \subset \Gamma$, and a sequence $\{p_m\}_{m\in\mathbb{N}}$ of homogeneous polynomials with $deg(p_m) = d_m$ such that the intersection $Z(p_m) \cap \Gamma$ is stable and:

 $(\mathsf{D},\mathsf{Z}(\mathfrak{p}_{\mathfrak{m}})\cap\mathsf{D})\sim(\mathbb{R}^{\mathfrak{n}-1},\mathsf{Z}_{\mathfrak{d}_{\mathfrak{m}}})$ for all $\mathfrak{m}\in\mathbb{N}.$

Definable Hypersurfaces \cap Varieties

Theorem (Basu-Lerario-N 2018)

Let $\{Z_d\}_{d\in\mathbb{N}}$ be a sequence of smooth, compact hypersurfaces in \mathbb{R}^{n-1} . There exists a regular, compact, semianalytic hypersurface $\Gamma \subset \mathbb{RP}^n$, a disk $D \subset \Gamma$, and a sequence $\{p_m\}_{m\in\mathbb{N}}$ of homogeneous polynomials with deg $(p_m) = d_m$ such that the intersection $Z(p_m) \cap \Gamma$ is stable and:

 $(\mathsf{D},\mathsf{Z}(\mathfrak{p}_{\mathfrak{m}})\cap\mathsf{D})\sim(\mathbb{R}^{\mathfrak{n}-1},\mathsf{Z}_{\mathfrak{d}_{\mathfrak{m}}})$ for all $\mathfrak{m}\in\mathbb{N}.$

Takeaway

You can make the Betti numbers of the intersection of a definable hypersurface and an algebraic set arbitrarily large.

References

- S. Barone and S. Basu. Refined bounds on the number of connected components of sign conditions on a variety. *Discrete* & Computational Geometry, 47(3):577-597, 2012.
- S. Basu, A. Lerario, and A. Natarajan. Zeroes of polynomials on definable hypersurfaces: pathologies exist, but they are rare. *Quarterly Journal of Mathematics (to appear)*, 2018.
- L. Guth. Polynomial partitioning for a set of varieties. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 159, pages 459–469. Cambridge University Press, 2015.
- L. Guth and N. H. Katz. On the erdős distinct distances problem in the plane. *Annals of Mathematics*, pages 155–190, 2015.
- H. Kaplan, J. Matoušek, and M. Sharir. Simple proofs of classical theorems in discrete geometry via the guth-katz polynomial partitioning technique. *Discrete & Computational Geometry*, 48: 499-517, 2012.

- A. G. Khovanskii. Fewnomials, volume 88. American Mathematical Soc., 1991.
- M. Lotz, A. Natarajan, and N. Vorobjov. Partitioning theorems for sets of semi-pfaffian sets, with applications, 2024. URL https://arxiv.org/abs/2412.02961.
- J. Milnor. On the betti numbers of real varieties. *Proceedings of* the American Mathematical Society, 15(2):275-280, 1964.
- O. Oleinik and I. Petrovsky. On the topology of real algebraic hypersurfaces. *Izv. Acad. Nauk SSSR*, 13:389-402, 1949.
- R. Thom. Sur l'homologie des variétés algébriques réelles. Differential and combinatorial topology, pages 255–265, 1965.