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{poﬁynomial Method in Combinatorics

. » Incidence combinatorics studies combinatorial aspects of the
intersections of geometric objects

» Algebro-geometric techniques have been very effective

» Technique called polynomial partitioning has helped solve
several open problems in incidence geometry and other areas
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polynomiaﬁ parfifioning

Theorem (Guth and Katz [2015], Guth [2015])

Let T be a set of k-dimensional semialgebraic sets in R™. For any

D > 1, there is polynomial P of degree < D, such that each cell

induced by P intersects at most ~ D‘: - elements of T.

a set I of 10 partitioning each cell intersects
curves in R? polynomial induces 5  only few curves from
cells I
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undersfancﬁing polynomial parfifioning

Let P € R[Xq,..., Xn] be of degree at most D:

\» P induces at most ~ D™ cells (Oleinik-Petrovsky [1949],
Milnor [1964], Thom [1965])

» A k-dimensional algebraic set intersects at most ~ D¥ cells of
CC(P) (Barone-Basu [2012])

» We have |I'| no. of semialgebraic sets, so there are at most
~|I'| x D¥ T-cell intersections

READIS : o
» There are most D™ cells, so ~ % denotes equipartition

See survey by Kaplan et al. [2012] for a wide range of applications
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Szemerédi-Jrotter Theorem

> In between point p and line 1 is when

INCIDENCES BETWEEN THREE POINTS AND FOUR LINES

* A A
—— i ————

2 incidences 3 incidences 4 incidences

R ——
B —— T

L

5 incidences 6 incidences 7 incidences

» m points and n lines in R%; O(m*?>n*? + m + n) incidences
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Goal: given points P and lines £, count incidences J(P, £)
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» (weak bound) for each x € P,
» By definition: I(x, £) < |P| + |L4]
> J(P AN Y | Tx L) = [

> J(P, L) < min{|P? +|L],|P| + L%}
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» Partition using poly. P of degree D; and
2]

, and theorem gives [P;i| < 5z

» (in cells) J0J; Pi. U; £i) < X3 183l +1P:? < LD + |PPD 2
» (using Bézout's theorem) J(Pq14, UJ; £1) < [£|D
» Z(P) can contain only D lines: J (fP,Lalg) PP

2/3
» Set D = and sum up W

nl/3

Takeaway

Polynomial partitioning and basic arguments worked!
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» Semialgebraic sets possess tameness properties such as
stratifiability, triangulability, etc.

» ...investigate classes of sets with the tame topological
properties of semialgebraic sets... - Grothendieck, Esquisse
d’un Programme

» O-minimal geometry (geometry of ) is an
axiomatic generalization of real algebraic geometry
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w}ty O-Minimal Structures?

> is a collection of sets satisfying tameness
axioms

» Semialgebraic sets in R™ form an o-minimal structure

» Other examples - R with exp function (e.g. x* +e*"2Y = 0),
Pfaffian functions (e.g. x>3! —e®" =0)

» O-minimal incidence combinatorics is lagging behind algebraic
incidence combinatorics

Question

Can we generalize polynomial partitioning to the o-minimal
setting? ... we make progress...
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» Let U C R™ be an open set. £ e = )i € C2(U) is a
if there exist polys.
\ Biyc RIX. - ARG Yi] verifying

» g:R" > Risa w.r.t. T if there exists
polynomial Qg € R[Xy,..., Xy, Y1,...,Ys] such that

g(x) = Qg (x, f1(x), ..., fr(x))

» o= max;; Py is called , B :=deg(Qg) is
of g, Tis of g; (o, Bir) is of g
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» A polynomial of degree D w.r.t. the empty chain; format is
. (e, D, 0) for any integer & > 0.

> W=1(q:4" .. qr+), where gi(x) = edi-1(x)  and go(x) =axf is
a Pfaffian chain of order r and chain-degree r. Consequently,
any P € R[X, e?X, eeax, ...] is a Pfafhian function w.r.t. §.

= (% In(x)) is a Pfaffian chain on the domain R\ {0}; any
eR [X, % In(X)] is a Pfaffian function.

(%,xm) for any m € R is a Pfaffian chain; any

eR[X, %,Xm} is a Pfaffian function w.r.t. q.
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Plaffians

> Zero set of a Pfaffian function is called a
» Locus of inequalities of Pfaffian functions is

» The , i.e., the smallest collection of sets
containing all semi-Pfaffian sets and that is stable under all
structure operations, is an o-minimal structure.
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Main Theorem

Theorem (Partitioning Pfaffians [Lotz-N-Vorobjov, 2024])
Let ' be a collection of semi-Pfaffian sets in R™ of dimension k,
Where each 'y € T has order .
1. Forany D > 1, there is P € R[Xq, ..., Xnl of degree D, such
that each cell induced by P intersects at most Dn‘l,r
elements of I'.

2. For any D > 1, there is a Pfaffian function P’ of degree D
such that each cell induced by P intersects at most D‘ﬂk
elements of .

Takeaway

1. Generalization of Polynomial Partitioning to Pfaffians

2. New technique of Pfaffian Partitioning
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CCy
\ CC2

the line intersects three cells induced by P

» Poly. P of deg. D in n variables induces at most D™ cells

» We show for a k-dimensional semi-Pfaffian set y of order r

Dk+1’

Y intersects at most cells induced by P
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/E)oylicafions of parfifioning pfafﬁans

» (Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves
\ of order 1 in R2: O(m3r3 " en2i3 +m + n) incidences

» We also count joints between Pfaffian curves
» More applications possible

» Our technique lends itself to generalizing to other o-minimal
structures with caveat
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Crucial Jngredi@nf — Khovanskit's Theorem

Theorem ([Khovanskir, 1991, §3.12, Corollary 5])

Let § be a Pfaffian chain of order v and chain-degree «, where the
functions in the Pfaffian chain depend only on & < n variables. Let
f1,...,fn be Pfaffian functions on an open set U C R™, where f;
is of degree i w.r.t. . The number of non-degenerate solutions
of {x € W: fi(x) =...=Tn(x) =0} is bounded from above by

2By B (min{ETho £ By + .. B+ 1)

Takeaway
Bézout type theorem holds for Pfaffian sets.
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Let {Za}taen be a sequence of smooth, compact hypersurfaces in
R™1. There exists a regular, compact, semianalytic hypersurface
I' C RP™Y, a disk D C T, and a sequence {pm }men of homogeneous
polynomials with deg(pm) = dm such that the intersection

Z(pm) NT is stable and:
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Theorem (Basu-Lerario-N 2018)

Let {Za}taen be a sequence of smooth, compact hypersurfaces in
R™1. There exists a regular, compact, semianalytic hypersurface
I' C RP™Y, a disk D C T, and a sequence {pm }men of homogeneous
polynomials with deg(pm) = dm such that the intersection

Z(pm) NT is stable and:

(D, Z(pm) N D) ~ (R™ 1, Z4.) “orallmcN.

Takeaway

You can make the Betti numbers of the intersection of a
definable hypersurface and an algebraic set arbitrarily large.




R@f@rences

S. Barone and S. Basu. Refined bounds on the number of
connected components of sign conditions on a variety. Discrete
& Computational Geometry, 47(3):577-597, 2012.

S. Basu, A. Lerario, and A. Natarajan. Zeroes of polynomials on
definable hypersurfaces: pathologies exist, but they are rare.
Quarterly Journal of Mathematics (to appear), 2018.

L. Guth. Polynomial partitioning for a set of varieties. In
Mathematical Proceedings of the Cambridge Philosophical
Society, volume 159, pages 459-469. Cambridge University
Press, 2015.

L. Guth and N. H. Katz. On the erdds distinct distances problem in
the plane. Annals of Mathematics, pages 155-190, 2015.

H. Kaplan, J. Matousek, and M. Sharir. Simple proofs of classical
theorems in discrete geometry via the guth—katz polynomial
partitioning technique. Discrete & Computational Geometry, 48:
499-517, 2012.



A. G. Khovanskil. Fewnomials, volume 88. American Mathematical
Soc., 1991.

M. Lotz, A. Natarajan, and N. Vorobjov. Partitioning theorems for
sets of semi-pfaffian sets, with applications, 2024. URL
https://arxiv.org/abs/2412.02961.

J. Milnor. On the betti numbers of real varieties. Proceedings of

\ the American Mathematical Society, 15(2):275-280, 1964.

O. Oleinik and I. Petrovsky. On the topology of real algebraic
hypersurfaces. Izv. Acad. Nauk SSSR, 13:389-402, 1949.

R. Thom. Sur I'homologie des variétés algébriques réelles.
Differential and combinatorial topology, pages 255-265, 1965.


https://arxiv.org/abs/2412.02961

	Introduction
	References
	References

