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Real Algebraic Geometry
▶ Real Algebraic Set: The set of real zeros of polynomials

P1, . . . ,Ps ∈ R[X1, . . . ,Xn]

Z(P1, . . . ,Ps) := {x ∈ Rn |P1(x) = . . . = Ps(x) = 0}

Z(x2 + y2 − 1) Z(y− x2)

▶ Semialgebraic set: A set S ⊆ Rn that is a �nite Boolean
combination of sets de�ned by polynomial inequalities:

{x ∈ Rn |P(x) ⩾ 0}

{−(x2 + y2 − 1) ⩾ 0} {y ⩾ x} ∧ {x ⩾ y}
{
x2 + y2 ⩽ 2

}
∧ ({y− x ⩾ 4} ∨¬{x− y ⩽ 4})
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‘Polynomial Method’ in Combinatorics

▶ Incidence combinatorics studies combinatorial aspects of the
intersections of geometric objects

▶ Algebro-geometric techniques have been very e�ective

▶ Technique called polynomial partitioning has helped solve
several open problems in incidence geometry and other areas
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Polynomial Partitioning

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional semialgebraic sets in Rn. For any

D ⩾ 1, there is a polynomial P of degree ⩽ D, such that each cell

induced by P intersects at most ∼
|Γ |

Dn−k elements of Γ .

a set Γ of 10
curves in R2
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Understanding Polynomial Partitioning

Let P ∈ R[X1, . . . ,Xn] be of degree at most D:

▶ P induces at most ∼ Dn cells (Oleinik-Petrovsky [1949],
Milnor [1964], Thom [1965])

▶ A k-dimensional algebraic set intersects at most ∼ Dk cells of
CC(P) (Barone-Basu [2012])

▶ We have |Γ | no. of semialgebraic sets, so there are at most
∼ |Γ |×Dk Γ -cell intersections

▶ There are most Dn cells, so ∼
|Γ |×Dk

Dn denotes equipartition

See survey by Kaplan et al. [2012] for a wide range of applications
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Szemerédi-Trotter Theorem
▶ Incidence between point p and line l is when p ∈ l
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2/3 +m+ n) incidences
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Proof of Sz-Tr using Poly. Part.

Goal: given points P and lines L, count incidences I(P,L)

▶ (weak bound) for each x ∈ P, Lx := lines only containing x

▶ By de�nition: I(x,L) ⩽ |P|+ |Lx|

▶ I(P,L) ⩽
∑

x∈P I(x,L) = |P|2 +
∑

x∈P |Lx|

▶ I(P,L) ⩽ min{|P|2 + |L|, |P|+ |L|2}
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Proof of Sz-Tr using Poly. Part.

▶ Partition using poly. P of degree D; P =
⋃

i Pi ∪ Palg. and

L =
⋃

iLi ∪ Lalg., and theorem gives |Pi| ⩽
|P|

D2

▶ (in cells) I(
⋃

i Pi,
⋃

iLi) ⩽
∑

i |Li|+ |Pi|
2 ⩽ |L|D+ |P|2D−2

▶ (using Bézout's theorem) I(Palg,
⋃

iLi) ⩽ |L|D

▶ Z(P) can contain only D lines: I
(
P,Lalg

)
⩽ |P|+D2

▶ Set D = m
2/3

n1/3
and sum up ■

Takeaway

Polynomial partitioning and basic arguments worked!
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Generalize Real Algebraic Geometry

▶ Semialgebraic sets possess tameness properties such as
strati�ability, triangulability, etc.

▶ ...investigate classes of sets with the tame topological

properties of semialgebraic sets... - Grothendieck, Esquisse
d'un Programme

▶ O-minimal geometry (geometry of de�nable sets) is an
axiomatic generalization of real algebraic geometry
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Why O-Minimal Structures?

▶ O-minimal structure is a collection of sets satisfying tameness

axioms

▶ Semialgebraic sets in Rn form an o-minimal structure

▶ Other examples - R with exp function (e.g. x3 + ex+2y = 0),
Pfa�an functions (e.g. x2.31 − ee

y
= 0)

▶ O-minimal incidence combinatorics is lagging behind algebraic
incidence combinatorics

Question
Can we generalize polynomial partitioning to the o-minimal

setting?
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Question
Can we generalize polynomial partitioning to the o-minimal

setting? ... we make progress...



Pfaffian Functions

▶ Let U ⊆ Rn be an open set. f⃗ = (f1, . . . , fr), fi ∈ C∞(U) is a
Pfa�an chain if there exist polys.
Pi,j ∈ R[X1, . . . ,Xn, Y1, . . . ,Yi] verifying

∂fi
∂xj

= Pi,j(x, f1(x), . . . , fi(x))

▶ g : Rn → R is a Pfa�an function w.r.t. f⃗ if there exists
polynomial Qg ∈ R[X1, . . . ,Xn, Y1, . . . ,Yr] such that

g(x) = Qg(x, f1(x), . . . , fr(x))

▶ α := maxi,j Pi,j is called chain-degree, β := deg(Qg) is degree
of g, r is order of g; (α,β, r) is format of g
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Pfaffian Functions - Examples

▶ A polynomial of degree D w.r.t. the empty chain; format is
(α,D, 0) for any integer α > 0.

▶ q⃗ = (q1, . . . ,qr), where qi(x) = eqi−1(x), and q0(x) = ax, is
a Pfa�an chain of order r and chain-degree r. Consequently,
any P ∈ R[X, eaX, eeaX

, . . .] is a Pfa�an function w.r.t. q⃗.

▶ q⃗ =
(
1
x , ln(x)

)
is a Pfa�an chain on the domain R \ {0}; any

P ∈ R
[
X, 1

X , ln(X)
]
is a Pfa�an function.

▶ q⃗ =
(
1
x , x

m
)
for any m ∈ R is a Pfa�an chain; any

P ∈ R
[
X, 1

X ,X
m
]
is a Pfa�an function w.r.t. q⃗.
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Pfaffians

▶ Zero set of a Pfa�an function is called a Pfa�an set

▶ Locus of inequalities of Pfa�an functions is Semi-Pfa�an set

▶ The Pfa�an structure, i.e., the smallest collection of sets
containing all semi-Pfa�an sets and that is stable under all
structure operations, is an o-minimal structure.
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Main Theorem
Theorem (Partitioning Pfa�ans [Lotz-N-Vorobjov, 2024])

Let Γ be a collection of semi-Pfa�an sets in Rn of dimension k,

where each γ ∈ Γ has order r.

1. For any D ⩾ 1, there is P ∈ R[X1, . . . ,Xn] of degree D, such

that each cell induced by P intersects at most
|Γ |

Dn−k−r

elements of Γ .

2. For any D ⩾ 1, there is a Pfa�an function P ′ of degree D

such that each cell induced by P intersects at most
|Γ |

Dn−k

elements of Γ .

Takeaway

1. Generalization of Polynomial Partitioning to Pfa�ans

2. New technique of Pfa�an Partitioning
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Proof - Main Technical Step

Z(P)
cc1

cc2

cc3 cc4

cc5

cc6

the line intersects three cells induced by P

▶ Poly. P of deg. D in n variables induces at most Dn cells

▶ We show for a k-dimensional semi-Pfa�an set γ of order r

γ intersects at most Dk+r cells induced by P
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Applications of Partitioning Pfaffians

▶ (Pfa�an Szemerédi-Trotter) m points and n Pfa�an curves

of order r in R2: O(m
2r+2

2r+3
+εn

r+2

2r+3 +m+ n) incidences

▶ We also count joints between Pfa�an curves

▶ More applications possible

▶ Our technique lends itself to generalizing to other o-minimal
structures with caveat
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Crucial Ingredient - Khovanskiı̆’s Theorem

Theorem ([Khovanski��, 1991, �3.12, Corollary 5])

Let q⃗ be a Pfa�an chain of order r and chain-degree α, where the

functions in the Pfa�an chain depend only on ξ ⩽ n variables. Let

f1, . . . , fn be Pfa�an functions on an open set U ⊆ Rn, where fi
is of degree βi w.r.t. q⃗. The number of non-degenerate solutions

of {x ∈ U : f1(x) = . . . = fn(x) = 0} is bounded from above by

2(
r
2
)β1 . . .βn (min{ξ, r}α+ β1 + . . .+ βn − n+ 1)r .

Takeaway

Bézout type theorem holds for Pfa�an sets.
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Definable Hypersurfaces ∩ Varieties

Theorem (Basu-Lerario-N 2018)

Let {Zd}d∈N be a sequence of smooth, compact hypersurfaces in

Rn−1. There exists a regular, compact, semianalytic hypersurface

Γ ⊂ RPn, a disk D ⊂ Γ , and a sequence {pm}m∈N of homogeneous

polynomials with deg(pm) = dm such that the intersection

Z(pm) ∩ Γ is stable and:

(D,Z(pm) ∩D) ∼ (Rn−1,Zdm
) for all m ∈ N.

Takeaway

You can make the Betti numbers of the intersection of a

de�nable hypersurface and an algebraic set arbitrarily large.
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