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Introduction

Problem Relevance:

I Tons of data is generated by sensing systems

I Sampling at required rates (Nyquist rate) is impractical

I Construct compressible representations of signals
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The sparse vector recovery problem

Sparse Vector Recovery Problem: Given a matrix A ∈ Rn×N ,
with n� N, and a vector y ∈ Rn, find a k-sparse vector
x ∈ RN such that

y = Ax

There exists efficient algorithm recovering x if A exhibits the
Restricted Isometry Property (RIP).
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Restricted Isometry Property (RIP)

Definition
Given k < n and 0 < δ < 1, a matrix A ∈ Rn×N is
(k, δ)-RIP if, for any k-sparse vector x ∈ Rn,

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2

Ideally, a matrix that exhibits strong RIP has

I large k (called order)

I small δ (called RIC)
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RIP and Sparse Recovery

Theorem (Candes, Romberg and Tao, 2005, 2006, 2008)

If A is (2k, δ)-RIP for some δ <
√

2− 1, we can find an
k-sparse x efficiently by solving

min
a∈Rn
‖a‖1 subject to Aa = y

The above result just says that N dimensional k-sparse
signals can be compressed into n dimensional signals if we
use a matrix A that exhibits good RIP.
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On Constructing RIP Matrices

For N = poly(n),

I Best deterministic constructions can achieve
k ≤ n0.50001 by Bourgain et al. (2011)

I Can be shown that randomized constructions give
k ∈ Ω(n/polylog(n)) by sampling a random symmetric
±1 Bernoulli matrix or a random Gaussian matrix,
w.h.p..

Randomized constructions are much better than
deterministic constructions!
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RIP Certification

Definition
(RIP Certification Problem) Given a matrix M

I (Exact Version) Decide whether the matrix satisfies
(k , δ)-RIP.

I (Approximate Version) Decide whether a matrix
satisfies (k1, δ1)-RIP or does not satisfy (k2, δ2)-RIP.

I We only need to have δ ≤
√

2− 1 for most applications

”...an alternate approach, and one of interest in its
own right, is to work on improving the time it
takes to verify that a given matrix (possibly one of
a special form) obeys the RIP..” – Terry Tao
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Types of Exact Problems

In the exact optimization world, there are three kinds of
problems

I Decision (e.g., “YES” if ≥ k clauses of a SAT instance
are satisfiable, “NO” otherwise)

I Computation (e.g., find the max k such that k clauses
can be satisfied)

I Search (e.g., find an assignment that satisfies maximum
number of clauses)

Decision ≡P Computation ≤P Search
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Bringing in the ‘g ’

Parallelly, in the approximation world, there are three kinds
of problems

I Verification Gap problems (e.g.,“YES” if we can satisfy
≥ k clauses, “NO” if we cannot more than k

g clauses)

I Approximate Computation (e.g., find k ′ such that
k ≥ k ′ and k ≤ gk ′ clauses can be satisfied)

I Approximate Search (e.g., find an assignment that
satisfies at least opt

g clauses)
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Relation Between Approximation Versions

I Verification Gap ≤P Approx. Computation
Get k ′∗ from Approx. Computation; We know that real
k∗ ≤ gk ′∗, so if gk ′∗ ≥ k , say “YES”

I Approx. Computation ≤P Verification Gap
Find largest k such that Verification Gap says “YES”,
return k

g as answer

Verification Gap ≡P Approx. Computation ≤P Approx. Search
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Making Strong Hardness Statements

I Decision problems are easiest to work with, that is why
we work with Verification Gap problems

I Proving NP hardness of Gap version is a strong
statement

I Two kinds of reductions for inapproximability results:
I Gap-Producing Reduction - No gap in original problem
I Gap-Preserving Reduction - Reduction from one gap

problem to other
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Graph Expansion

Definition
Given a graph d-regular graph G (V ,E ), we define

φG (S) =
No. of edges going out of S

No. of edges incident on vertices of S

=
|E(S ,V − S)|

d ·min(|S |, |V − S |)

φG (δ) = min
S :|S|≤δ|V |

ΦG (S) (δ ≤ 1

2
)

I Expansion of S measures the probability of a random
edge cross a set S

I Expansion is a very useful notion
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Small-Set-Expansion Conjecture

Definition
SSE (ε, δ) problem: Given a graph G = (V ,E ) of n vertices,
and ε, δ ≤ 1

2 , distinguish between the following cases

I (non-expanding) ∃S ⊂ V with |S | = δn such that
ΦG (S) ≤ ε

I (highly expanding) ∀S ⊂ V with |S | = δn,
ΦG (S) ≥ 1− ε

Conjecture (Raghavendra and Steurer 2010)

For every ε > 0, ∃ 0 ≤ δ ≤ 1
2 , such that it is NP-hard to

solve SSE (ε, δ):
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Importance of SSE Conjecture

I Unique Games Conjecture (UGC) is big open question
(Inapproximability results ...); For more, read Khot’s
survey (2010)

I Consequences of refutation of UGC was poorly
understood until SSE

I SSE is more natural and easy to state

I RS (2010) gave a reduction from SSE to UG; Also gave
other inapproximability results
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Previous Work (1): Hardness of Exact RIP
Certification

Exact Decision: Given δ, k , and a matrix M as input, decide
if M satisfy (k , δ)-RIP.

I Bandeira et al. (2013) proved that it is NP-hard

I Tillmann and Pfetsch (2014) proved that it is
co-NP-hard

I Both results work when δ = 1− on(1)
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Previous Work (2): Inapproximability of RIP
Certification

Koiran and Zouzias (2011, 2012) show inapproximability
results by assuming hardness of hidden clique problem and
densest k-subgraph problem

I Most results state that it is hard to distinguish
(k , δ1)-RIP from (k , δ2)-RIP for some δ1 < δ2 ∈ on(1)

I Exception:
I No polynomial time algorithm can distinguish matrices

that satisfy the (k , κ2 )-RIP from matrices that do not
satisfy the (k , κ)-RIP

where κ
(
≤
√

5
3

)
is an unknown constant depending on

the correctness of certain hardness assumptions of
densest k-subgraph.
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Previous Work (3): Inapproximability of RIP
Certification

I In practice, it is known that an RIP matrix is useful for
many applications as long as δ ≤

√
2− 1

I Their work does not rule out the existense of an
algorithm for deciding whether the RIC of a matrix is
≤
√

2− 1. This is because there is no guarantee that
κ ∈ (

√
2− 1, 2

√
2− 2).
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Our Results

Theorem
For any 0 ≤ δ ≤ 1 and arbitrary large constant C, there
exists k such that, given a matrix M it is
Small-Set-Expansion-hard to distinguish between:

I (Highly RIP) M is (k , δ)-RIP.

I (Far away from RIP) M is not ( k
C , 1− δ)-RIP.

This is the first hardness result that applies for any
0 < δ < 1 (including

√
2− 1).
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Corollaries

As corollaries, we have that

Corollary

Given a matrix M and k, it is
Small-Set-Expansion-hard to distinguish whether the
matrix is (k , δ)-RIP or not (k, 1− δ)-RIP.

Corollary

Given a fixed δ and matrix M, it is
Small-Set-Expansion-hard to get a constant
approximation for the smallest k such that M exhibits
(k, δ)-RIP.
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Proof Overview (1)

I If A is the adjacency matrix of a d regular graph, we
consider the matrix M such that MTM = I− 1

dA = L
for RIP certification

I (Completenss of the Reduction) If there is a small set S

with expansion less than ε, then φG (S) =
‖MxS‖2

2

‖xs‖2
2
≤ ε,

where xS ∈ {0, 1}n is the indicator vector on S . This
gives us ‖MxS‖2 ≤

√
ε‖xS‖2, which suggests that M is

far away from RIP.
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Proof Overview (2)

I (Soundess of the Reduction) show that if ∃ a k-sparse
x ∈ Rn such that

xTMTMx

‖x‖2
2

≤ (1− Ω(1))

then we can find a small set S such that φ(S) is also
bounded away from 1. This uses the Sparse Cheeger’s
Inequality
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Sparse Cheeger’s Inequality

We prove the following Cheeger’s Inequality on sparse
vectors.

Theorem
(Sparse Cheeger’s Inequality) Let A be the adjacency matrix
of a d-regular graph G, and L = I− 1

dA be its normalized
Laplacian matrix. For any δ ≤ 1/2, we have that

λδ ≤ φG (δ) ≤
√

(2− λδ)λδ

where λδ = min‖x‖0≤δ|V |
xTLx
xTx
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Comparison with Cheeger’s Inequality

Theorem
Let A be the adjacency matrix of a graph G, and L = I− 1

dA
be its normalized Laplacian matrix. We have that

λ2

2
≤ φ(G ) ≤

√
2λ2

where

λ2 = min
x∈Rn

x·~1=0

‖xTLx‖2

‖x‖2
2

is the second smallest eigenvalue of L.

It must be noted that the relation between λδ and φδ(G ) is
tighter in this case.
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Proof of Sparse Cheeger’s Inequality

I Lower bound of φδ(G ) is easy to prove

φδ(G ) = min
S⊆V
S≤δn

φ(S) = min
x∈{0,1}n
‖x‖0≤δ

xTLx

xTx
≥ λδ

I Upper bound is called hard direction. Here, we assume
we are given the vector x that gives us xTLx

xTx
= λδ.

I The same randomized rounding as the proof of
Cheeger’s Inequality, we can create a cut set in the
graph, and that the expansion of the cut is restricted.



Computational
Complexity of

Certifying
Restricted

Isometry Property

Abhiram
Natarajan, Yi Wu

Motivation

A soupçon of
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Concluding Remarks

Summary:

I We have proved that RIP certification is hard to
approximate in a strong sense assuming the
Small-Set-Expansion Hypothesis

I We developed a variant of Cheeger’s inequality for
sparse vectors

Future directions:

I It will be interesting to see if RIP certification is hard
even when the matrix satisfies certain natural properties
such as coherence

I It will also be interesting to prove NP/UG-hardness,
because correctness of the Small-Set-Expansion
Hypothesisis uncertain

I Subexponential algorithm for RIP certification
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